

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

Gauss Divirgence theorem:

The furface integral of normal component of vector function F own a closed simplace of enclosing Volume V is equal to the volume integral of divergence of F taking through sett the volume V i.e. If T. h ds = IST V. F dv

Verify the gauss divergence theorm (UTDT) for $\vec{F} = HXT\vec{1} - y^2\vec{j} + yZ\vec{k}$ over the cube bounded by X = 0, X = 1, y = 0, y = 1, Z = 0, Z = 1

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

$$\int_{F} \vec{r} \cdot \vec{n} \, dc \cdot \int_{S} \vec{v} \cdot \vec{r} \, dv$$

$$\vec{F} = H \times T \vec{l} - y' \vec{J} + y + \vec{k} \cdot \frac{1}{2} \cdot$$

(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

CS						
Scannec						
ned						
Scampes dau.	^	→ ^ F • ^	ds	-lqn	→ 1 on	J∫F. A ds
anner AECID	ì	НЯТ	dydz	N = 1	ИZ	ι, μταυο τ. ο θ
Sa OBFC.	→ -i	- 4× Z ·	dy dx.	N = 0	0	. 0
S3 EBFGI	j'.	- y '	dx dx.	y = r	-1	SSEID dadz
SH DADC	-J	+ 42	2 10 Klo	9 . 0	0	10
SE DOFC	r ⁷	yz	ola dy	X = 1	У	SS y dady
S6 OAFB	- K	- y z	dxdy	x = 0	0	0
fe Fe						

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

Verify gauss of inerdence theorem for

Verify gauss of inerdence theorem for

$$\vec{F} = x^2\vec{i} + y^2\vec{j} + z^2\vec{K}$$
 where \vec{J} is the

curface of the subsoid fermed by

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$

the planes $n = 0, x = a, y = 0, y = b,$
 \vec{J}
 $\vec{$

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$\begin{array}{lll}
 & \sum_{a} \left[\frac{a^2b}{a^2} + \frac{ab^2}{2} + abx \right] dx \\
 & = a \left[\frac{a^2b}{a^2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab$$

Face	'n	F. 6	ean	F.S on s	ds	JSF. A de
AEGID	77	× 2	$n = \alpha$	a ¹	dydz.	Sa'dydz.
OBFC.	7	-x 2	x = 0	0	dydz	0
EBFGI	Jr	1 y2	4 = 6	P .	dx dz	S b2 dadz
DA DC	-5	- y 2	4:0	0	dxdr	0
DO FC	-₹ K	12	T = @	e 2	dady	Pa yxdy
DAFB	-K	- 2)	2:0	0	dxdy.	0
			1 1			

$$\iint_{\Sigma_{1}} \vec{F} \cdot \hat{n} ds + \iint_{\Sigma_{2}} \vec{F} \cdot \hat{n} ds = \iint_{\Sigma_{1}} a' dy dz + 0$$

$$= a' \iint_{\Sigma_{2}} b dz$$
with

canned with with

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS GAUSS DIVERGENCE THEOREM

Scanned with Scanned with Restrictions