
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION
ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

UNIT 5 : SYSTEM DESIGN TECHNIQUES AND REAL TIME CONCEPTS

 TOPIC : Design Methodologies & System Analysis and Architecture
Design

1

System Design Techniques/19ECT312/Embedded systems Design /Ramya E
/ECE/SNSCT

26/04/202
4

1/13

Design Methodologies

2/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

INTRODUCTION

❖ Embedded systems are the backbone of modern technology, powering devices

and machinery across various industries.

❖ The design of embedded systems presents unique challenges due to constraints

such as limited resources, real-time requirements, and diverse application

domains.

❖ In this presentation, we will explore how design methodologies play a crucial

role in addressing these challenges and ensuring the efficiency and reliability of

embedded systems.

Importance of Design Methodologies

❖ Design methodologies provide structured approaches and frameworks

for managing the complexity of embedded systems design.

❖ They offer systematic methods for requirement analysis, system

architecture design, implementation, testing, and maintenance.

❖ By following established design methodologies, embedded systems

designers can streamline the development process, reduce risks, and

improve the quality of the final product.

26/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT 3/28

Design Methodologies

4/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

WATERFALL MODEL

❖ Overview of the Waterfall Model and its application in embedded systems design.

❖ Phases: Requirements, Design, Implementation, Testing, Deployment,

Maintenance.

❖ Advantages: Clear structure, well-defined milestones, and documentation.

❖ Disadvantages: Limited flexibility, challenges in accommodating changes late in

the process.

Design Methodologies

5/28
26/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

AGILE METHODOLOGY

❖ Agile development is an iterative and flexible approach to design that emphasizes

collaboration, adaptability, and continuous improvement. It involves breaking down the

development process into small incremental steps, allowing for frequent feedback and

adjustments. The key principles of agile development include:

➢ Iterative development: breaking down the project into small iterations or sprints,

with each iteration delivering a working product.

➢ Customer collaboration: involving the customer throughout the development

process to ensure their needs are met.

➢ Continuous improvement: regularly reviewing and refining the design based on

feedback and lessons learned.

➢ Flexibility: being able to adapt to changing requirements and priorities.

❖ Agile development methodologies, such as Scrum and Kanban, provide frameworks and

tools to implement these principles effectively.

6/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

❖ Iterative development in embedded systems means building software step by step,

fixing and improving it along the way.

➢ Little by Little: Instead of doing everything at once, developers work on small pieces

of the software at a time. Each piece they finish works, even if it's not complete.

➢ Feedback Helps: They show what they've done to others early on, so they can get

feedback. This helps them know if they're on the right track.

➢ Adapting to Change: Embedded systems often need to change because of new

requirements or problems. Iterative development lets developers adjust the software

as they go, making it easier to handle changes.

Design Methodologies

ITERATIVE DEVELOPMENT

SPIRAL MODEL

7/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

The Spiral Model is like a roadmap for building embedded systems, which are

devices with both hardware and software, like smartphones or smartwatches.

1.Setting Goals: First, we figure out what we want our embedded system to do

and what limitations we have to work with, like how much memory or battery

power it can use.

2.Thinking About Risks: Instead of just diving in, we spend time thinking

about what could go wrong. This could be problems with the hardware,

software, or how they work together.

3.Making Test Versions: We build simple versions of our system to test out

ideas and see if they work. These aren't the final product; they're just to help

us learn and fix problems early.

4.Building a Bit at a Time: We don't try to make everything all at once.

Instead, we add small pieces of the system step by step.

Design Methodologies

8/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Design Methodologies

DESIGN SPRINTS

Design sprints are a way to solve problems and test ideas fast.

1.Get Ready: Gather a team with different skills, like engineers and designers. Figure

out what problem you're trying to solve.

2.Learn About the System: Understand the embedded system you're working on,

including what users need and what the technical limits are.

3.Brainstorm Ideas: Everyone comes up with ideas for solving the problem,

thinking about both the hardware and software parts of the system.

4.Pick the Best Ideas: Share and discuss the ideas. Choose the ones that seem the

most promising and realistic.

Design Methodologies

9/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

SUCCESSIVE REFINEMENT

Successive refinement is a design methodology that involves breaking down a

complex problem or system into smaller, more manageable parts, and then refining

each part successively until it becomes detailed enough to be implemented.

1.Start with the Big Picture: First, you look at the whole puzzle and understand

what it's supposed to look like in the end.

2.Break it Down: Then, you start breaking the puzzle into smaller sections or pieces.

Each piece represents a part of the overall picture.

3.Work on Each Piece: You focus on one piece at a time, adding more details and

making sure it fits perfectly with the neighboring pieces.

4.Iterate and Improve: As you work on each piece, you might go back and forth,

making adjustments until it looks just right. You might even ask for feedback from

others to make sure you're on the right track.

Design Methodologies

10/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

HIERARCHICAL DESIGN FLOWS

Hierarchical design flows are a structured approach to designing complex systems or

products by organizing the design process into multiple hierarchical levels or layers. This

methodology is commonly used in various design disciplines, including electronics,

software engineering, and architecture.

1.Starting at the Top: You begin with the big picture in mind, like knowing you want to

build a tall tower. This is called the top-down approach.

2.Breaking it Down: You break the tower into smaller sections or layers. Each layer

represents a different part of the tower.

3.Working on Each Layer: You focus on one layer at a time, adding more details and

making sure it fits with the layer below it.

4.Setting Clear Boundaries: You establish clear boundaries between each layer so they

can interact properly. This helps each layer do its job without getting mixed up with the

others.

Design Methodologies

11/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

TEST-DRIVEN DEVELOPMENT

Test-Driven Development (TDD) is a design methodology commonly used in

embedded systems development to ensure software quality, reliability, and adherence

to requirements.

1.Write Tests First: In TDD, developers start by writing automated tests for the

functionality they want to implement.

2.Test Implementation: Once the tests are written, developers implement the

functionality to make the tests pass.

3.Run Tests: After writing the initial code, developers run the automated tests to

check if they pass. If any tests fail, developers iterate on the implementation until all

tests pass successfully.

4.Refactor Code: Once the tests pass, developers may refactor the code to improve its

structure, readability, and performance. Refactoring ensures that the code remains

maintainable and scalable over time.

Hardware/Software Co-design

12/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Design Methodologies

Hardware/Software Co-design is a design methodology commonly used in

embedded systems development to optimize the interaction between hardware

and software components.

1.Working Together: Hardware/Software Co-design means the hardware and

software teams collaborate from the start. They don't work in isolation; they work

together, like a team building a car engine and its control system simultaneously.

2.Understanding Needs: The process begins with understanding what the car

needs to do. This includes how fast it should go, how much fuel it should use, and

how it should respond to the driver's commands.

3.Talking to Each Other: Imagine the engine needs to tell the control system how

fast it's spinning. They need to agree on how to communicate. This is like

establishing interfaces between hardware and software components.

System Analysis

13/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Design Methodologies

System analysis involves studying a system to understand its components, their

interactions, and the system's behavior as a whole. This process aims to identify

the requirements, constraints, and objectives of the system.

❖ Requirement gathering: Collecting and documenting the functional and non-

functional requirements of the system from stakeholders.

❖ Feasibility study: Assessing the technical, economic, and operational feasibility

of the proposed system.

❖Modeling: Creating models such as use case diagrams, data flow diagrams, and

entity-relationship diagrams to represent the system's structure and behavior.

❖ Risk analysis: Identifying potential risks and uncertainties associated with the

system's development and operation.

Architecture design

14/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Architecture design involves defining the structure, components, and interactions

of a software system to meet its requirements while satisfying constraints such as

performance, scalability, and maintainability. This phase translates the

requirements identified during system analysis into a blueprint for the system's

implementation.

❖ Designing architectural patterns: Choosing suitable architectural patterns

such as client-server, layered, or microservices architecture based on the

system's requirements.

❖ Component design: Identifying the major components of the system and

defining their responsibilities and interfaces.

❖ Allocation of functionality: Assigning system functionalities to specific

components and modules.

System Analysis Process

15/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

System Analysis Process

❖ Identify Stakeholders:

➢ Identify all the stakeholders who will be involin or affected by the system.

This includes end-users, administrators, managers, and any other relevant

parties.

❖ Define System Scope:

➢ Clearly define the boundaries and objectives of the system. Determine what

the system will and will not do, and establish the goals it needs to achieve.

❖ Gather Requirements:

➢ Gather requirements by interacting with stakeholders through interviews,

surveys, workshops, or other techniques.

➢ Identify functional requirements (what the system should do) and non-

functional requirements (qualities the system should have, such as

performance, security, usability, etc.).

16/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

System Analysis Process

❖ Analyze Requirements:

➢ Analyze and prioritize the gathered requirements to ensure they are

complete, consistent, and feasible.

➢ Use techniques like requirement elicitation, validation, and negotiation to

refine and clarify the requirements.

❖Model the System:

➢ Create models to represent different aspects of the system, such as use case

diagrams, data flow diagrams, entity-relationship diagrams, or process

models.

➢ Models help visualize the system's structure, behavior, and interactions,

aiding in understanding and communication.

❖ Define System Interfaces:

➢ Identify the interfaces between the system and its users, as well as any

external systems or devices it interacts with.

17/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Importance of System Analysis

1.Risk Mitigation: System analysis involves identifying and analyzing potential

risks associated with the system's development and operation. By understanding

these risks early on, developers can implement appropriate mitigation strategies

to minimize the impact of potential problems on the project's success.

2.Enhanced Communication: System analysis facilitates effective communication

between stakeholders, including end-users, clients, developers, and project

managers. Clear documentation of requirements and system models helps in

conveying ideas, clarifying expectations, and ensuring everyone is on the same

page throughout the development process.

3.Improved System Design: A thorough system analysis lays the foundation for

designing an efficient and robust system architecture. By understanding the

system's structure, behavior, and interactions, architects and designers can make

informed decisions about the system's design, leading to better performance,

scalability, and maintainability.

18/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Importance of System Analysis

4.Understanding User Needs: System analysis helps in understanding the needs,

expectations, and requirements of users and stakeholders. By thoroughly

analyzing the system's context and stakeholders' perspectives, developers can

ensure that the final product aligns with users' expectations and fulfills their

requirements.

5.Requirement Clarification: System analysis enables clear and detailed

documentation of requirements. This helps in reducing ambiguity and

misunderstandings between stakeholders and developers, leading to more

accurate and effective system development.

6.Cost and Time Optimization: Identifying requirements accurately during the

system analysis phase helps in preventing costly changes and rework later in the

development process. It saves time and resources by addressing potential issues

upfront, thereby optimizing the development process.

19/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Types of Architecture Design

1.Monolithic Architecture:

➢ In a monolithic architecture, the entire system is designed as a single, self-

contained unit. All components and functionalities are tightly coupled and

deployed together.

➢ Monolithic architectures are straightforward to develop and deploy but may

lack scalability and flexibility, especially in large or complex systems.

2.Layered Architecture:

➢ Layered architecture organizes system components into layers, where each

layer provides services to the layer above it and consumes services from the

layer below it.

➢ This architectural style promotes modularity, separation of concerns, and

ease of maintenance. It is commonly used in embedded systems where clear

separation of functionalities is desired.

20/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Types of Architecture Design

3.Client-Server Architecture:

➢ Client-server architecture divides the system into client and server components,

where clients request services or resources from servers.

➢ This architecture facilitates distributed computing, scalability, and separation of

concerns. It is often used in networked embedded systems where devices

interact with centralized servers or cloud services.

4.Event-Driven Architecture:

➢ Event-driven architecture decouples system components by using

asynchronous communication based on events and event handlers.

➢ Components communicate by generating and consuming events, allowing

for loose coupling, scalability, and responsiveness. This architecture is

suitable for real-time embedded systems and systems with complex event

processing requirements.

21/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Types of Architecture Design

5.Service-Oriented Architecture (SOA):

➢ Service-oriented architecture decomposes the system into loosely coupled,

reusable services that communicate via standardized interfaces.

➢ SOA promotes interoperability, flexibility, and reusability. It is often used in

distributed embedded systems where interoperability between

heterogeneous devices is essential.

6.Microservices Architecture:

➢ Microservices architecture decomposes the system into small,

independently deployable services, each responsible for a specific

functionality or domain.

➢ Microservices promote scalability, maintainability, and autonomy of

development teams. They are commonly used in IoT ecosystems and cloud-

connected embedded systems.

22/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Architecture Design Process

1.Understand Requirements:

➢ Gather and analyze requirements from stakeholders to understand their

needs, expectations, and constraints. Identify functional and non-functional

requirements that will influence the system architecture.

2.Identify Stakeholders:

➢ Identify all stakeholders who will be involved in or affected by the system.

This includes end-users, customers, project managers, developers, testers,

and operations personnel.

3.Define System Scope:

➢ Define the boundaries and objectives of the system. Determine what the

system will and will not do, and establish the goals it needs to achieve.

Clarify the context in which the system will operate.

23/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Architecture Design Process

4.Identify Architectural Drivers:

➢ Identify and prioritize architectural drivers such as performance, scalability,

reliability, security, and maintainability. These drivers will guide

architectural decisions throughout the design process.

5.Select Architectural Styles and Patterns:

➢ Choose appropriate architectural styles, patterns, and paradigms based on

the identified requirements and architectural drivers. Consider factors such

as system complexity, scalability, and development team expertise.

6.Decompose System:

➢ Decompose the system into smaller, manageable components or modules.

Identify the responsibilities, interfaces, and dependencies of each

component.

24/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Importance Architecture Design

1.Blueprint for Development: Architecture design serves as a blueprint or

roadmap for the development team. It provides a high-level view of the system's

structure, behavior, and interactions, guiding developers in implementing the

system's components and functionalities.

2.Scalability: A well-designed architecture enables the system to scale efficiently

to accommodate changes in user requirements, data volume, and user load. It

allows for the addition or modification of components without requiring extensive

redesign or redevelopment.

3.Maintainability: A well-structured architecture promotes modularization and

encapsulation, making it easier to maintain and update the system over time. It

allows developers to make changes to individual components without impacting

the entire system, reducing the risk of introducing bugs or errors.

25/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Importance Architecture Design

4.Flexibility and Adaptability: An architecture that is designed with flexibility

and adaptability in mind can easily accommodate changes in technology, business

requirements, and market conditions. It allows the system to evolve over time to

meet new challenges and opportunities.

5.Performance Optimization: Architecture design plays a crucial role in

optimizing the system's performance. By carefully planning the distribution of

responsibilities, data flow, and interactions between components, architects can

ensure that the system meets performance requirements such as response time,

throughput, and resource utilization.

6.Security: Architecture design influences the security posture of the system. By

incorporating security principles and best practices into the architecture, such as

authentication, authorization, encryption, and data protection mechanisms,

architects can mitigate security risks and vulnerabilities.

26/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Challenges In Architecture Design

1.Complexity Management: Handling the increasing complexity of software

systems.

2.Scalability: Designing for growth without sacrificing performance or reliability.

3.Performance Optimization: Meeting performance requirements while

minimizing bottlenecks.

4.Maintainability and Evolvability: Ensuring the architecture is easy to maintain

and adapt over time.

5.Security and Compliance: Incorporating security measures and adhering to

regulations.

6.Interoperability and Integration: Facilitating seamless integration with

external systems.

7.Technology Selection and Adoption: Choosing the right tools and frameworks

for the architecture.

27/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E /ECE/SNSCT

Solutions In Architecture Design

1.Modular Design: Break down the system into modular components to manage

complexity and promote maintainability.

2.Scalability Planning: Design for scalability by leveraging scalable technologies

and architectures like microservices or distributed systems.

3.Performance Profiling: Use performance profiling tools and techniques to

identify bottlenecks and optimize critical components.

4.Continuous Refactoring: Embrace continuous refactoring to keep the

architecture adaptable and maintainable as requirements evolve.

5.Security by Design: Integrate security measures into the architecture from the

outset, including encryption, access controls, and secure communication

protocols.

6.API and Interface Standards: Define clear and standardized APIs and

interfaces to facilitate interoperability and integration with external systems.

7.Technology Evaluation: Conduct thorough evaluations of technologies and

frameworks to choose the most suitable ones for the project's needs.

THANK YOU

System Design Techniques/19ECT312/Embedded systems Design /Manoj R /ECE/SNSCT 28/2826/04/2024 System Design Techniques/19ECT312/Embedded systems Design /Ramya E
/ECE/SNSCT

26/04/202
4

28/13

	Slide 1: SNS COLLEGE OF TECHNOLOGY
	Slide 2: Design Methodologies
	Slide 3: Importance of Design Methodologies
	Slide 4: Design Methodologies
	Slide 5: Design Methodologies
	Slide 6: Design Methodologies
	Slide 7: SPIRAL MODEL
	Slide 8: Design Methodologies
	Slide 9: Design Methodologies
	Slide 10: Design Methodologies
	Slide 11: Design Methodologies
	Slide 12: Hardware/Software Co-design
	Slide 13: System Analysis
	Slide 14: Architecture design
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

