
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade 
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION 
ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

TOPIC : Memory Management in Embedded system

11/22/2024

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 26/03/202
4



Memory Management

26/03/2024 2/13

What is an Memory Management ?

• Memory management in embedded systems is a crucial aspect of software
development, especially considering the limited resources typically available in such
systems.

• Embedded systems often have constraints in terms of memory size, processing power,
and energy consumption.

• Efficient memory management is essential to ensure optimal utilization of resources
and to meet performance requirements.

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 3/13

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 4/13

Memory allocation in memory management for embedded systems 
involves the process of efficiently assigning memory resources to 
different components of the embedded software.

Static Allocation:

▪ In many embedded systems, memory allocation is primarily 
static, meaning that memory usage is determined at compile 
time.

▪ Memory for variables, data structures, and buffers is allocated 
statically, typically based on predefined requirements and 
constraints.

▪ This approach helps avoid the overhead and unpredictability 
associated with dynamic memory allocation and deallocation.

Memory Management

What is an Memory Allocation ?

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 5/13

Stack-Based Allocation:
▪ Stack memory is commonly used for local variables and function call 

frames in embedded systems.
▪ As functions are called and return, the stack pointer is adjusted accordingly 

to allocate and deallocate memory for local variables and function 
parameters.

▪ Stack-based allocation provides deterministic behavior and efficient 
memory management, particularly for short-lived data.

Static Data Allocation:
▪ Global variables and statically allocated data structures are placed in 

memory regions determined at compile time.
▪ The size and location of these variables are known during compilation, 

allowing the compiler/linker to assign memory addresses accordingly.
▪ Static data allocation is well-suited for data that persists throughout the 

program's execution.

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 6/13

Heap-Based Allocation:
▪ Although less common in embedded systems due to its dynamic nature, heap-

based memory allocation is sometimes used for allocating memory at runtime.
▪ Embedded systems may employ custom memory allocation schemes, such as 

memory pools or fixed-size allocators, to mitigate fragmentation and overhead 
associated with traditional heap management.

▪ Heap-based allocation requires careful management to prevent memory 
fragmentation and ensure efficient memory usage.

Memory Constraints and Optimization:
▪ Memory allocation in embedded systems must consider stringent constraints 

such as limited memory size and real-time performance requirements.
▪ Optimization techniques, including code and data compression, memory pooling, 

and alignment, are applied to minimize memory usage and maximize resource 
utilization.

▪ Trade-offs between memory usage, performance, and complexity are carefully 
evaluated to meet the specific requirements of the embedded system.

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 7/13

Memory Profiling Techniques

Introducing various profiling techniques for analyzing memory usage in embedded

systems.
▪ Memory Usage Graphs: Visual representations of memory consumption over time, showing 

trends and peaks in memory usage.
▪ Memory Heatmaps: Color-coded representations of memory usage across different memory 

regions or components, highlighting areas of high and low usage.
▪ Memory Allocation Tree: Hierarchical diagram illustrating memory allocation relationships, 

showing how memory is divided among different components and data structures.
▪ Memory Leak Detection: Diagrams or tables indicating potential memory leaks, including 

information such as allocated memory blocks, their sizes, and references to the code causing 
the leaks.

▪ Heap and Stack Usage: Graphs or diagrams showing the usage of heap and stack memory 
over time, helping identify potential issues such as stack overflow or excessive heap 
fragmentation.

▪ Function Call Memory Profiles: Visualizations depicting memory usage associated with 
specific functions or modules, aiding in identifying memory-intensive areas of code.

▪ Memory Access Patterns: Visual representations of memory access patterns, including read 
and write operations, helping optimize memory usage and access efficiency.

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 8/13

Modeling Memory Usage

▪ Memory usage modeling is a way to organize and define how 
memory behaves.

▪ It provides structure and rules for how to access and use 
addresses in a system.

▪ Memory models are important for concurrent programs 
because they define the possible values that a read operation 
can return based on the write operations performed by the 
program.

▪ They also provide the basic semantics of shared variables, 
which are crucial for reasoning about programs and 
programming language

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 9/13

Memory Optimization Strategies:

Memory Management

1.Code Size Reduction:
1. Minimize the size of executable code by eliminating redundant or unnecessary instructions.
2. Use compiler optimization flags to reduce code size without sacrificing functionality.
3. Employ techniques like function inlining, loop unrolling, and dead code elimination to streamline code 

execution.
2.Data Compression:

1. Compress data stored in memory to reduce memory footprint.
2. Apply compression algorithms such as run-length encoding, Huffman coding, or delta encoding to 

efficiently store and retrieve data.
3. Balance compression ratio with decompression overhead to ensure acceptable performance.

3.Memory Pooling:
1. Allocate fixed-size memory blocks from a pre-allocated pool instead of using dynamic memory allocation.
2. Reduce memory fragmentation and overhead associated with dynamic memory management.
3. Implement custom memory allocators tailored to specific application requirements.

4.Memory Alignment:
1. Align data structures to memory boundaries to optimize memory access.
2. Improve performance by ensuring that data structures are accessed efficiently without unnecessary 

padding.
3. Minimize memory waste and enhance cache utilization by aligning data structures appropriately.

5.Selective Compilation:
1. Use conditional compilation to include or exclude features based on system requirements.
2. Enable/disable optional features or modules to reduce memory usage.
3. Customize build configurations for different target platforms or deployment scenarios to optimize 

memory allocation.

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 10/13

Real Time case study:

.

Memory Management

In an automotive embedded system, memory management is critical for real-time
performance and reliability. For instance, in an engine control unit (ECU), memory allocation
ensures efficient storage of sensor data, control algorithms, and diagnostic routines. Static
allocation reserves memory for critical functions like ignition timing, while dynamic
allocation handles variable-sized data streams from sensors. Memory pooling optimizes
resource usage, reducing fragmentation and ensuring timely responses to engine events. By
carefully managing memory, the ECU maintains real-time responsiveness, enhances fuel
efficiency, and ensures safe operation, illustrating the pivotal role of memory management
in embedded systems for automotive applications.

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 11/13

Advantages:

▪ Resource Optimization

▪ Reliability and Stability

▪ Real-Time Responsiveness

▪ Space Efficiency

▪ Security Enhancement

▪ Ease of Maintenance

▪ Optimized Performance

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 



26/03/2024 Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 12/13

Memory Management

Disadvantages:

▪ Complexity Overhead

▪ Overhead in Real-Time Systems

▪ Fragmentation

▪ Memory Leaks

▪ Resource Constraints

▪ Security Risks

▪ Performance Degradation



SUMMARY & THANK YOU

26/03/2024 13/13Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 


	Slide 1: SNS COLLEGE OF TECHNOLOGY
	Slide 2: Memory Management
	Slide 3
	Slide 4: Memory Management
	Slide 5: Memory Management
	Slide 6: Memory Management
	Slide 7: Memory Management
	Slide 8: Memory Management
	Slide 9: Memory Management
	Slide 10: Memory Management
	Slide 11: Memory Management
	Slide 12: Memory Management
	Slide 13: SUMMARY & THANK YOU

