
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’

Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

UNIT 3 – EMBEDDED OPERATING SYSTEM AND

MODELLING

TOPIC –EMBEDDED OPERATING SYSTEM PROCESS

MANAGEMENT AND IPC

III YEAR/ VI SEMESTER
1

3/26/2024 Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 2/25

Introduction

•Embedded operating systems play a crucial role in embedded systems design. They are
specialized operating systems designed to run on embedded devices, which are typically
small, resource-constrained devices used in specific applications.

•These operating systems are optimized for the unique requirements of embedded systems,
such as real-time responsiveness, low power consumption, and efficient resource utilization.

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 3/25

Embedded Systems Design

•Embedded systems design plays a crucial role in developing efficient and reliable
systems.

• These systems are designed to perform specific tasks and are often used in various
industries, including automotive, healthcare, and consumer electronics.

• The design process involves careful consideration of hardware and software
components to ensure optimal performance and functionality.

3/26/2024 4/25

Processor Management in Embedded Systems

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT

•Embedded systems require efficient processor management to ensure optimal
performance and resource utilization.This involves various tasks such as process
scheduling, memory management, and interrupt handling.

Processor Management Tasks

Task Description

Process Scheduling Determines the order in which processes are executed
on the processor. Common scheduling algorithms
include round-robin, priority-based, and shortest job
first.

Memory Management Manages the allocation and deallocation of memory
resources for processes. This includes managing
virtual memory, page tables, and memory protection
mechanisms.

Interrupt Handling Handles interrupts generated by external devices or
software. Interrupt handlers prioritize and handle
interrupts in a timely manner to ensure proper system
functionality.

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 5/25

Debugging and Testing C++ Programs in
Embedded Systems

Power-Saving Strategies

• Embedded systems employ various
power-saving strategies to optimize
energy consumption and extend
battery life.

Optimization Techniques

• Embedded systems can utilize
optimization techniques to reduce
power consumption and improve
efficiency.

File Systems in Embedded Systems

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 6/25

FAT (File Allocation Table)

•Simple and widely supported file system.
•Efficient for small storage devices.
•Does not support journaling or encryption.

NTFS (New Technology File System)

•Advanced file system with features like journaling, encryption, and compression.
•Suitable for larger storage devices.
•Requires more resources.

ext4 (Fourth Extended File System)

•Popular file system for Linux-based embedded systems.
•Supports journaling, encryption, and extended file attributes.
•Provides good performance and reliability.

Interrupt Handling

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 7/25

Interrupt Service Routines

•Interrupt service routines (ISRs) are functions that are executed in response to an
interrupt.

•ISRs handle the interrupt by performing specific tasks or actions.

•ISRs are typically short and time-critical to minimize the impact on system
performance.

Interrupt Prioritization

•Interrupt prioritization determines the order in which interrupts are handled.

•Interrupts with higher priority are serviced first.

•Priority levels can be assigned to different interrupts to ensure critical tasks are
handled promptly.

Task Communication

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 8/25

Shared Memory

•Shared memory is a method of interprocess communication where multiple tasks can
access the same memory region.

•This allows tasks to share data and communicate with each other by reading and
writing to the shared memory area.

Message Passing

•Message passing is another method of task communication in embedded systems. Tasks
can send messages to each other through a communication channel, which can be a
queue or a mailbox.

•This allows tasks to exchange data and synchronize their operations.

Shared Memory

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 9/25

•Shared memory is a mechanism used in embedded systems for inter process communication
(IPC). It allows multiple processes to access a common memory region, enabling efficient
data sharing and communication between processes.
•Shared memory offers several benefits and also presents some challenges that need to be
considered in embedded system design.

Benefits and Challenges of Shared Memory

Benefits Challenges

1. Fast Communication 1. Synchronization

2. Efficient Data Sharing
2. Data Consistency

3. Low Overhead
3. Security

Message Passing

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 10/25

Direct Message Passing
•In direct message passing, processes communicate directly with each other by sending
messages through shared memory buffers or mailboxes.
•This mechanism is commonly used in real-time systems where low latency and high
throughput are critical.
Indirect Message Passing
•Indirect message passing involves processes communicating through a centralized
entity, such as a message queue or a message server.
•This mechanism is often used in distributed systems where processes may not have
direct knowledge of each other.
Use Cases
•Direct message passing is suitable for scenarios where processes need to quickly
exchange data and synchronize their execution.
•Indirect message passing is useful when processes are geographically distributed or
when a centralized entity is responsible for managing message exchange between
processes.

Synchronization Mechanisms

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 11/25

Mutexes
•Mutexes are used to protect shared resources from concurrent access by multiple
processes or threads.
•Only one process or thread can acquire the mutex at a time, preventing other processes
or threads from accessing the shared resource until the mutex is released.

Semaphores
•Semaphores are used to control access to a shared resource with a limited capacity.
•They can be used to limit the number of processes or threads that can access the
resource at the same time.
•Semaphores can be used for signaling between processes or threads, allowing them to
synchronize their activities.
Monitors
•Monitors are a higher-level synchronization mechanism that combines mutexes and
condition variables.
•They provide a way for multiple processes or threads to safely access shared resources
and communicate with each other.
•Monitors ensure that only one process or thread can execute a monitor procedure at a
time, preventing concurrent access to shared resources.

Mutexes

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 12/25

Benefits

•Prevents race conditions: Mutexes ensure that only one task or process can access the

shared resource at a time, preventing race conditions where multiple tasks or processes try

to modify the resource simultaneously.

•Provides mutual exclusion: Mutexes provide mutual exclusion, ensuring that tasks or

processes do not interfere with each other's execution when accessing the shared resource.

•Ensures data integrity: By allowing only one task or process to access the shared resource

at a time, mutexes ensure data integrity by preventing inconsistent or corrupted data due to

concurrent access.

•Supports resource sharing: Mutexes allow multiple tasks or processes to share a resource

while ensuring that only one task or process can access the resource at a time, preventing

conflicts and ensuring proper resource utilization.

Mutexes

Usage

•Mutexes, short for mutual exclusion, are synchronization mechanisms used in embedded
systems to protect shared resources from simultaneous access by multiple tasks or
processes.

•A mutex is a binary semaphore that allows only one task or process to access the shared
resource at a time.

•When a task or process wants to access the shared resource, it first checks if the mutex is
available. If the mutex is available, it locks the mutex and gains exclusive access to the
resource. If the mutex is not available, the task or process waits until the mutex becomes
available.

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 13/25

Semaphores

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 14/25

Usage of Semaphores

•Semaphores are used as a synchronization mechanism in embedded systems.

•They help manage access to shared resources and prevent race conditions.

•Semaphores are often used in multitasking systems to coordinate the execution of
multiple processes or threads.

Monitors

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 15/25

•Monitors are a synchronization mechanism commonly used in embedded systems to
ensure safe and efficient inter process communication. They provide a structured way
for processes to access shared resources and avoid conflicts. Some of the benefits of
using monitors in embedded systems include:

•Mutual Exclusion: Monitors allow only one process to access a shared resource at a
time, preventing concurrent access and avoiding data corruption.

•Condition Synchronization: Monitors provide a way for processes to wait for a certain
condition to be met before accessing a shared resource, reducing resource wastage and
improving system efficiency.

•Encapsulation: Monitors encapsulate both the shared resource and the
synchronization mechanism, making it easier to manage and maintain the system.

•Deadlock Prevention: Monitors can be designed to prevent deadlock situations by
enforcing a specific order of resource acquisition and release.

Deadlock Avoidance

3/26/2024 Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT 16/25

Techniques to Prevent Deadlock

•Resource Allocation Graph (RAG): A directed graph that represents the allocation of
resources and the requests made by processes. Deadlocks can be detected by checking for
cycles in the graph.

•Banker's Algorithm: A resource allocation algorithm that ensures that processes do not
enter into a deadlock state by considering the maximum resource requirements of each
process.

•Avoidance of Circular Wait: Processes should request resources in a specific order to avoid
circular wait conditions.
•Resource Ordering: Processes should request resources in a consistent order to prevent
deadlocks.

•Resource Preemption: If a process requests a resource that is currently allocated to
another process, the resource can be preempted from the current process and allocated to
the requesting process.

•Timeouts: If a process is waiting for a resource for too long, it can be assumed that a
deadlock has occurred and appropriate actions can be taken.

Deadlock Detection

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 17/25

Deadlock Detection Algorithms

•Resource Allocation Graph (RAG): This algorithm represents the resource allocation
and process request as a directed graph. Deadlock detection is performed by analyzing
the graph for cycles.

•Banker's Algorithm: This algorithm is used to detect and prevent deadlocks by
simulating the allocation of resources to processes and checking for unsafe states.

•Wait-for Graph: This algorithm represents the waiting relationships between
processes and resources as a directed graph. Deadlock detection is performed by
analyzing the graph for cycles.

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 18/25

Techniques to Recover from Deadlock Situations

•Deadlock Detection and Recovery: Use algorithms to detect deadlocks and recover by
releasing resources and restarting processes.

•Deadlock Avoidance: Use resource allocation strategies to avoid deadlock situations
altogether.

•Deadlock Prevention: Implement protocols and guidelines to prevent deadlocks from
occurring in the first place.

Deadlock Recovery

Key Features and Benefits of RTOS

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 19/25

Feature Description Benefit

Task Scheduling RTOS provides priority-based
scheduling algorithms to ensure
critical tasks are executed on time.

Guarantees timely execution of
time-sensitive tasks.

Interrupt Handling RTOS efficiently handles
interrupts, allowing for quick
response to external events.

Enables real-time response to
critical events.

Resource Management RTOS manages system resources,
such as memory and peripherals,
to optimize performance.

Ensures efficient utilization of
system resources.

Inter-Process Communication RTOS facilitates communication
between different processes or
tasks, enabling data sharing and
synchronization.

Enables collaboration and
coordination between tasks.

Deterministic Behavior RTOS provides deterministic
behavior, ensuring predictable and
consistent execution of tasks.

Enables precise timing and
control in time-critical
applications.

Fault Tolerance RTOS includes error handling
mechanisms to detect and recover
from system failures.

Enhances system reliability and
availability.

Task Scheduling

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 20/25

Real-Time Operating Systems
•Task scheduling is a critical aspect of real-time operating systems (RTOS) in embedded
system design. It involves allocating system resources to different tasks to ensure timely
execution.

Scheduling Algorithms
Round-Robin Scheduling: Each task is assigned a fixed time slice, and tasks are executed in
a circular order. This algorithm ensures fairness but may lead to higher overhead due to
context switching.
Priority-Based Scheduling: Tasks are assigned priorities, and the task with the highest
priority is executed first. This algorithm allows for efficient utilization of system resources
but may result in lower fairness

Resource Management

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 21/25

•In real-time operating systems, efficient resource management is crucial for ensuring
optimal performance and reliability. This includes managing memory and processor
allocation to meet the requirements of different tasks and processes.

Memory and Processor Allocation

Resource Processor Allocation Techniques

•Memory •Allocation and
deallocation of
memory blocks for
tasks and processes.

•Static allocation,
dynamic allocation,
memory pools

•Processor •Allocation of
processor time to
tasks and processes.

•Priority-based
scheduling, time
slicing, round-robin
scheduling

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 22/25

Real-Time Operating Systems
•Real-time operating systems (RTOS) are designed to handle time-critical tasks in embedded
systems.
•Power management in RTOS involves optimizing power consumption to extend battery life
and reduce energy costs.
Techniques to Optimize Power Consumption
•Dynamic Voltage and Frequency Scaling (DVFS): Adjusting the voltage and frequency of the
processor based on workload to reduce power consumption.
•Task Scheduling: Scheduling tasks based on their power requirements and priorities to
minimize power consumption.
•Sleep Modes: Utilizing low-power sleep modes during idle periods to conserve energy.
•Power Gating: Disabling power to unused peripherals or modules to reduce power
consumption.
•Clock Gating: Disabling clock signals to unused components to reduce power consumption.

Power Management

Features

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 23/25

•Open-source and customizable: Embedded Linux allows developers to modify and customize
the operating system to meet the specific requirements of the embedded system.

•Rich set of libraries and tools: Embedded Linux provides a wide range of libraries and tools
that simplify the development process and enable the use of various software components.

•Real-time capabilities: Embedded Linux can be configured to provide real-time capabilities,
allowing for precise timing and synchronization in embedded systems.

•Security: Embedded Linux offers robust security features, including access control
mechanisms and encryption algorithms.

Benefits

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 24/25

•Cost-effective: Using an open-source operating system like Embedded Linux can
significantly reduce development and licensing costs.

•Scalability: Embedded Linux is highly scalable and can be used in a wide range of
embedded systems, from small devices to complex systems.

•Community support: Embedded Linux has a large and active community of
developers, providing support, documentation, and a wide range of resources.

•Interoperability: Embedded Linux supports various communication protocols and
standards, enabling seamless integration with other systems and devices.

SUMMARY & THANK YOU

Embedded OS Process management and IPC/19ECT312/Embedded systems Design / Ramya E /ECE/SNSCT3/26/2024 25/25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

