
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION
ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

UNIT 4 : EMBEDDED OPERATING SYSTEMS & MODELING

TOPIC : Memory Optimization needs

1

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 1/15

INTRODUCTION

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 2/15

• Memory optimization is a crucial aspect of programming in C++.

• It involves managing memory resources efficiently to enhance performance and

reduce resource consumption.

• Effective memory optimization leads to faster execution, reduced memory

footprint, and improved scalability of applications.

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 3/15

MEMORY OPTIMIZATION

• Performance Boost: Optimized memory usage leads to faster execution and improved

system responsiveness.

• Resource Efficiency: Efficient memory management reduces resource consumption,

saving costs and enhancing resource utilization.

• Scalability: Proper memory optimization allows applications to handle larger datasets

and scale efficiently.

• Reduced Overhead: Minimizing memory overhead improves system efficiency and

stability.

• Memory Leak Prevention: Optimization practices help prevent memory leaks,

ensuring long-term stability.

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 4/15

IMPORTANCE

DYNAMIC MEMORY MANAGEMENT

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 5/15

Efficient Resource Allocation: Dynamic memory management allows for efficient allocation

and deallocation of memory during runtime, catering to varying memory requirements of the

program.

Flexibility: Unlike static memory allocation, dynamic memory management provides

flexibility by allowing memory allocation to be determined at runtime based on program logic

and user input.

Dynamic Data Structures: Dynamic memory allocation enables the creation of dynamic data

structures such as linked lists, trees, and graphs, which can grow or shrink in size as needed.

Memory Efficiency: Dynamic memory management helps optimize memory usage by

allocating memory only when necessary and releasing it when no longer needed, reducing

memory wastage.

Handling Unknown Data Sizes: In scenarios where the size of data is not known at compile

time, dynamic memory management provides a solution by allowing memory allocation based

on runtime conditions.

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT
6/15

STACK vs HEAP

DATA STRUCTURES SELECTION

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 7/15

• Efficiency: Choose data structures that offer efficient operations for the specific tasks

performed by the program, such as insertion, deletion, search, and traversal.

• Memory Usage: Consider the memory requirements of different data structures and

choose ones that optimize memory usage while meeting the application's needs.

• Access Patterns: Analyze the typical access patterns of the data (e.g., sequential access,

random access) and select data structures that support these access patterns efficiently.

• Insertion and Deletion Operations: Different data structures have varying time

complexities for insertion and deletion operations. Choose data structures that minimize

the time complexity for these operations based on the application's requirements.

MEMORY POOLS

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT
8/15

• Memory pools preallocate a fixed size of memory for a specific type of object.

• They reduce fragmentation and allocation overhead by reusing allocated memory

blocks.

• Useful for scenarios where frequent allocation and deallocation of objects occur.

• Minimizing Overhead: Object reuse reduces the overhead associated with object creation

and destruction by recycling existing objects instead of repeatedly allocating and

deallocating memory.

• Performance Optimization: Reusing objects can lead to performance optimizations by

eliminating the need for frequent memory allocation and deallocation operations, thereby

improving execution speed and reducing memory fragmentation.

• Resource Conservation: Object reuse conserves system resources by maximizing the

utilization of existing objects, reducing memory consumption, and minimizing the strain on

the memory management system.

• Memory Leak Prevention: Properly managed object reuse helps prevent memory leaks by

ensuring that memory allocated for objects is effectively reused and released when no longer

needed, reducing the risk of memory exhaustion over time.

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 9/15

OBJECT REUSE

MEMORY PROFILING

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 10/15

• Identifying Memory Usage Patterns: Memory profiling tools help in identifying

patterns of memory allocation and deallocation within the application, highlighting

areas of excessive memory usage or potential memory leaks.

• Detecting Memory Leaks: Memory profiling enables the detection of memory leaks

by identifying memory allocations that are not properly deallocated, helping

developers pinpoint and fix memory leak issues before they impact application

stability.

• Optimizing Memory Allocation: By analyzing memory usage patterns and

identifying memory hotspots, memory profiling facilitates the optimization of memory

allocation strategies, allowing developers to minimize memory overhead and improve

application performance.

• Monitoring Resource Consumption: Memory profiling provides insights into the

overall resource consumption of the application, including peak memory usage,

memory fragmentation, and allocation patterns, helping developers ensure efficient

resource utilization and scalability.

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 11/15

RAII PRINCIPLE

• RAII (Resource Acquisition Is Initialization) is a programming idiom used in C++ to

ensure resource cleanup.

• Resources such as memory, file handles, and locks are acquired during object

initialization and released during object destruction.

• RAII helps in managing resources safely and efficiently, reducing the risk of resource

leaks and improving code readability and maintainability.A

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 12/15

PROFILE AND BENCHMARK

• Regularly profile and benchmark your code to identify memory hotspots and

performance bottlenecks.

• Profiling tools like gprof, perf, and Intel VTune help in analyzing program behavior,

identifying performance issues, and optimizing code.

• Benchmarking helps in comparing different optimization techniques and measuring

their impact on performance and memory usage.

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 13/15

MEMORY ALIGNMENT

• Memory alignment ensures that data is stored in memory at addresses that are multiples

of its size.

• Proper memory alignment improves memory access efficiency and performance,

especially in architectures with strict alignment requirements.

• Use compiler-specific directives or attributes to control memory alignment and

optimize memory access patterns.

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 14/15

MEMORY OPTIMIZATION FLAGS

• Enable compiler optimization flags (-O2, -O3) to allow the compiler to perform various

optimizations, including memory-related optimizations.

• Compiler optimizations can improve code performance, reduce code size, and optimize

memory usage.

• Experiment with different optimization levels to find the best balance between

performance and compile time.

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 15/15

CONCLUSIONS

• In conclusion, memory optimization is a critical aspect of software development in

C++. By efficiently managing memory resources, developers can significantly enhance

the performance, efficiency, and reliability of their applications.

• Through techniques such as dynamic memory management, smart pointers, and data

structure selection, developers can minimize memory overhead, prevent memory leaks,

and optimize resource utilization.

• In summary, memory optimization is a fundamental requirement for achieving high-

performance, resource-efficient, and reliable software solutions in C++, and it should

be a priority throughout the software development lifecycle.

THANK YOU

3/26/2024 19ECT312/Embedded System Design / Ramya E /ECE/SNSCT 16/15

	Slide 1: SNS COLLEGE OF TECHNOLOGY
	Slide 2: INTRODUCTION
	Slide 3: MEMORY OPTIMIZATION
	Slide 4: IMPORTANCE
	Slide 5: DYNAMIC MEMORY MANAGEMENT
	Slide 6: STACK vs HEAP
	Slide 7: DATA STRUCTURES SELECTION
	Slide 8: MEMORY POOLS
	Slide 9: OBJECT REUSE
	Slide 10: MEMORY PROFILING
	Slide 11: RAII PRINCIPLE
	Slide 12: PROFILE AND BENCHMARK
	Slide 13: MEMORY ALIGNMENT
	Slide 14: MEMORY OPTIMIZATION FLAGS
	Slide 15: CONCLUSIONS
	Slide 16: THANK YOU

