
Sns College Of Technology
Coimbatore-35

An Autonomous Institution

Department Of Electronics & Communication Engineering

19ECT312 – EMBEDDED SYSTEM DESIGN

UNIT 3- Programming Concepts & Embedded Programming In C++

TOPIC : CROSS COMPILERS

26.03.2024 Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT 1

Cross Compiler In Embedded System Design

• Leverage a cross compiler to streamline embedded system development.

• Optimizing code for target hardware architectures.

• Enhancing efficiency and performance without the need for platform-specific tools.

26.03.2024 Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT 2

Introduction To Embedded Systems

• Embedded system design involves creating computer systems dedicated to specific tasks, often with limited

resources.

• They're crucial in modern technology, powering devices like IoT gadgets and automotive systems.

• Programming languages play a vital role, providing the tools to develop efficient, reliable, and scalable

embedded software tailored to hardware constraints.

26.03.2024 Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT 3

Challenges in Embedded System Design

• Developers must contend with constraints such as limited memory, processing power, and diverse hardware

architectures.

• They also face real-time constraints, requiring software to respond within strict time bounds for critical

operations.

• Efficient algorithms, optimized code, and careful resource management are essential to meet these

challenges effectively.

26.03.2024 Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT 4

Cross Compiler

• A cross compiler generates code for a different platform than the one it runs on.

• Ideal for embedded systems with diverse architectures.

• Compared to native compilers, it offers portability, enabling development on a single platform for multiple

targets, streamlining embedded system design.

26.03.2024 Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT 5

Cross Compilation Process

• In cross compilation, source code is compiled on one platform to generate object files.

• These files are then linked and converted into a target binary compatible with the intended embedded

system architecture, facilitating deployment.

6Cross compiler/19ECT312-Embedded System Design/ Nandhini P/ ECE/ SNSCT26.03.2024

Cross Compilation Process

26.03.2024 7Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Fig 1: Process of cross compiler

Cross Compilation Toolchain

• A cross compiler toolchain comprises an assembler for translating assembly code.

• Linker for combining object files into executables.

• Libraries providing reusable code.

• Essential components for generating target binaries in embedded system development.

26.03.2024 8Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Setting Up Case Compilation Environment

• Install the cross compiler toolchain.

• Configure it by specifying target architecture and compiler options.

• Then integrate with IDEs like Eclipse or Visual Studio Code for streamlined development of embedded

systems across platforms.

26.03.2024 9Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Optimization Techniques

• Compiler flags for size optimization: `-Os` prioritizes smaller code size.

• For speed: `-O3` maximizes performance.

• Architecture-specific optimization flags like `-march=` and Link-Time Optimization (LTO) with `-flto`

further enhance efficiency and performance in embedded systems.

26.03.2024 10Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Optimization Techniques

26.03.2024 11Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Fig 2: Optimization of cross compiler

Target Hardware Considerations

• Understanding target hardware architecture involves knowing its Instruction Set Architecture (ISA),

defining the processor’s supported instructions.

• Endianness determines byte order in memory representation.

• Crucial for proper data handling in embedded system development.

26.03.2024 12Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Debugging CC Code

• Debugging embedded systems presents challenges due to limited visibility.

• Techniques include printf debugging, using hardware debuggers, and simulation.

• Tools like GDB, JTAG debuggers, and IDEs such as Eclipse provide support for efficient debugging.

26.03.2024 13Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Testing Stratergies

• Testing is vital in embedded system development to ensure reliability.

• Unit testing verifies individual components, integration testing checks their interactions, while Hardware-

in-the-Loop (HIL) testing validates real-time behavior in the target environment.

• Enhancing overall quality and performance.

26.03.2024 14Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Real World Applications

• ESD examples: automotive control units, medical devices, IoT sensors.

• Case studies: Cross compilation reduced development time by 30% for a medical device company and

improved efficiency by 25% in automotive ECUs development.

26.03.2024 15Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Cross Compilation Best Practices

• Version control and continuous integration ensure code integrity and automate build processes.

• Documentation provides clarity and facilitates maintenance.

• Code review ensures quality and knowledge sharing, essential practices in efficient and collaborative

embedded system development.

26.03.2024 16Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Security Considerations

• Source coding practices: Follow MISRA-C or CERT coding standards.

• Mitigation strategies: Use static analysis tools, conduct code reviews, implement secure coding practices.

• Vulnerabilities: Buffer overflows, insecure communication, inadequate authentication, and insufficient

input validation are common in embedded systems.

26.03.2024 17Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Future Trends & Challenges

• Emerging technologies like AI, IoT, and edge computing influence embedded system design.

• Challenges in cross compilation include ensuring compatibility across diverse hardware platforms,

optimizing code for performance, and managing complexity in software development workflows.

26.03.2024 18Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Conclusion

• Cross compilation streamlines embedded system development by generating code for diverse hardware

platforms, enhancing portability, efficiency, and performance.

• It enables efficient utilization of resources and facilitates rapid prototyping, crucial for meeting stringent

requirements in modern embedded systems design.

26.03.2024 19Cross compiler/19ECT312-Embedded System Design/ Nandhini P/ ECE/ SNSCT

References

• Books:

 “Embedded Systems: Architecture, Programming and Design” by Raj Kamal

 “Embedded Systems: Real-Time Interfacing to ARM Cortex-M Microcontrollers” by Jonathan W. Valvano

• Journals:

 IEEE Transactions on Embedded Systems, ACM Transactions on Embedded Computing Systems, Journal

of Embedded Systems

26.03.2024 20Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

Thankyou

26.03.2024 21Cross compiler/19ECT312-Embedded System Design/ Ramya E / ECE/ SNSCT

	Slide 1: Sns College Of Technology Coimbatore-35 An Autonomous Institution Department Of Electronics & Communication Engineering
	Slide 2: Cross Compiler In Embedded System Design
	Slide 3: Introduction To Embedded Systems
	Slide 4: Challenges in Embedded System Design
	Slide 5: Cross Compiler
	Slide 6: Cross Compilation Process
	Slide 7: Cross Compilation Process
	Slide 8: Cross Compilation Toolchain
	Slide 9: Setting Up Case Compilation Environment
	Slide 10: Optimization Techniques
	Slide 11: Optimization Techniques
	Slide 12: Target Hardware Considerations
	Slide 13: Debugging CC Code
	Slide 14: Testing Stratergies
	Slide 15: Real World Applications
	Slide 16: Cross Compilation Best Practices
	Slide 17: Security Considerations
	Slide 18: Future Trends & Challenges
	Slide 19: Conclusion
	Slide 20: References
	Slide 21: Thankyou

