

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-II ORDINARY DIFFERENTIAL EQUATIONS

Legendre's Linear Differential Equation

$$\frac{(ax+b)^n}{dx^n} + a, (ax+b)^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + a^2(ax+b)^{n-2} \frac{d^{n-2}y}{dx^{n-2}}$$

+···· +
$$a_{n-1}(ax+b)\frac{dy}{dx} + a_n y = Q(x) \rightarrow 0$$

Take
$$ax+b=e^{\frac{\pi}{2}}$$

$$\frac{\pi}{2} = \log (ax+b)$$

$$\frac{(ax+b)}{2} = ab'$$

$$\frac{(ax+b)^2}{2} = a^2 b'(b'-1)$$

$$\frac{(ax+b)^3}{2} = a^3 b'(b'-1)(b'-2)$$
 and so on.

$$(2x+3)^{2}y'' - (2x+3)y' + 2y = 6x$$

Given
$$[8x+3)^2 p^2 - (2x+3) + 2Jy = 6x$$

Take
$$2x+3=e^{x} \Rightarrow 2x=e^{x}-3$$
 $\Rightarrow 2x=e^{x}-3$

(1)
$$\Rightarrow$$
 [4D'(D'-1) - 2D' + 2] $y = 6 \left[\frac{e^{x} - 3}{2} \right]$
[4D' $= 4D' - 2D' + 2$] $y = 3[e^{x} - 3]$

$$[4D'^{2} 6D' + 2]y = 3e^{2} - 9$$
 which is a linear equ. with constant coefficients.

Scanned with
$$\frac{d^2y}{dx^2}$$
 - $(x+2)\frac{dy}{dx}$ + $y = 3x + 4$

CS Scanned with CamScanner

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

UNIT-II ORDINARY DIFFERENTIAL EQUATIONS

Legendre's Linear Differential Equation

Solh.

Given
$$[(x+2)^2D^2 - (x+2)D+1]y = 3x+4 \rightarrow (1)$$

Take $x+2=e^{x} \Rightarrow x=e^{x}-2$
 $x = \log |x+2)$
 $(x+2)D = D^1$
 $(x+2)^2D^2 = D^1(D-1)$
 $(1) \Rightarrow [D^1(D^1-1) - D^1+1]y = 3[e^x-2]+4$
 $[D^1-D^1-D^1+1]y = 3e^x-6+4$
 $[D^2-2D^1+1]y = 3e^x-2$
 $(m-1)(m-1) = 0$
 $(m-$