

DEPARTMENT OF MATHEMATICS

16MA301- PROBABILITY AND QUEUEING THEORY

Page 1 OF 6

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Sn	1.,	tion	•	
20	(14	FION	•	

PROBLEMS :

() Find the coefficient of correlation between industrial

Production and export using the following data:

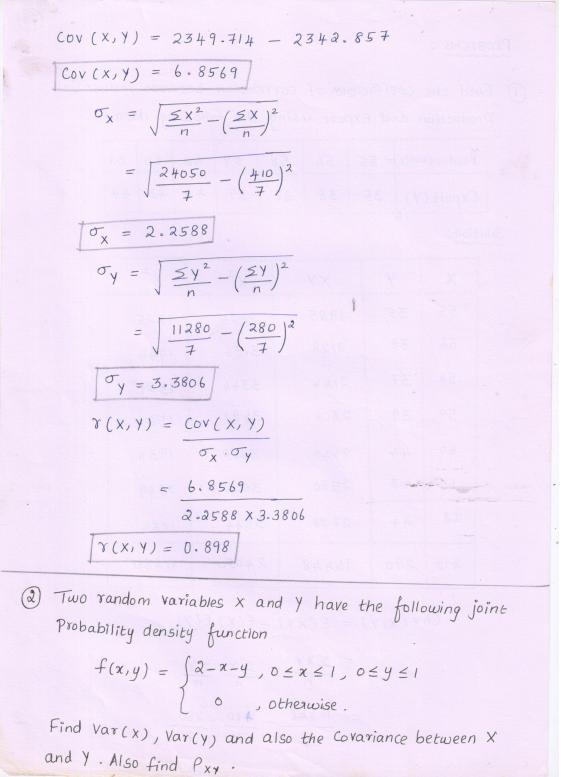
Production(x)	55	56	58	59	60	60	62
Export (Y)	35	38	37	39	44	J4-3	44

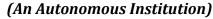
Solution :

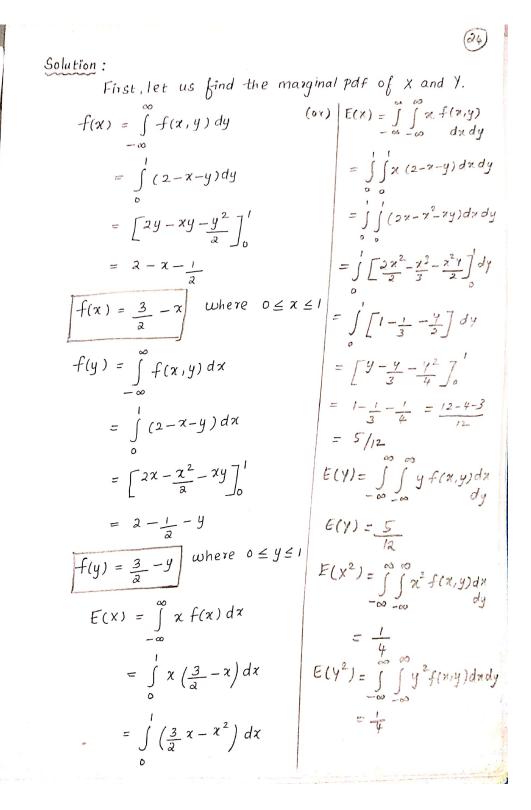
X	У	ХУ	X ²	y 2
55	35	1925	3025	1225
56	38	2128	3136	1444
58	37	2146	3364	1369
59	39	2301	3481	1521
60	44	2640	3600	1936
60	43	2580	3600	1849
62	44	27 28	3844	1936
410	280	16448	24050	11280

Cov(x,y) = E(xy) - E(x)E(y)

$$= \frac{5 \times Y}{n} - \frac{5 \times 5 \times 7}{n} = \frac{16448}{7} - \frac{410}{7} \cdot \frac{280}{7}$$




(An Autonomous Institution)


DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS

$$E(x) = 4\alpha \left[\frac{x^3}{x}\right]_0^1$$
(3)

$$Vax(Y) = E(Y^2) - \left[E(Y)\right]^2$$

$$= \frac{1}{4} - \left(\frac{5^-}{12}\right)^2$$

$$Vax(Y) = \frac{11}{144}$$
(3)

$$\sigma_X^2 = \frac{11}{144} \Rightarrow \sigma_X = \frac{511}{12}$$

$$C(XY) = \int_0^{\infty} \int_0^{\infty} xyf(x,y) dx dy$$

$$= \int_0^{1} \int_0^{1} (2xy - x^2y - xy^2) dx dy$$

$$= \int_0^{1} \int_0^{1} (2xy - x^2y - xy^2) dx dy$$

$$= \int_0^{1} \left[2\frac{x^2y}{2} - \frac{x^3y}{2} - \frac{x^2y^2}{2}\right]_0^1 dy$$

$$= \int_0^{1} \left[y - \frac{y}{3} - \frac{y^2}{2}\right]_0^1 dy$$

$$= \left[\frac{y^2}{2} - \frac{y^2}{6} - \frac{y^3}{6}\right]_0^1$$

$$= \frac{1}{2} - \frac{1}{6} - \frac{1}{6}$$

$$E(XY) = \frac{1}{6}$$

Page 5 OF 6

Cov(X,Y) = E(XY) - E(X)E(Y) $= \frac{1}{6} - \frac{5}{12} \cdot \frac{5}{12}$ $= \frac{1}{6} - \frac{25}{144}$ $Cov(X,Y) = -\frac{1}{144}$ V(X,Y) = P(X,Y) = Cov(X,Y) $= \frac{-\frac{1}{144}}{\frac{\sqrt{11}}{12} \cdot \frac{\sqrt{11}}{12}} = -\frac{1}{11}$ $\overline{V}(X,Y) = -\frac{1}{11}$

Solution :

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx$$
$$= \int_{0}^{1} x (4ax) dx$$

16MA301- PROBABILITY AND QUEUEING THEORY

12 -2