

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

Gauss Divirgence theorem:

The furface integral of normal component of vector function F over a closed swiface S enclosing Volume V is equal to the volume integral of divergence of F taking through cut the volume V i.e $\text{If } \vec{F}$. \hat{n} $ds = \text{If } \vec{V}$. \vec{F} dV

Verify the gauss divergence theorm (DIDT) for $\vec{F} = HXT\vec{7} - y^2\vec{j} + yZ\vec{k}$ ours the sube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

So need with

$$\int_{S} \vec{r} \cdot \hat{n} \, ds \cdot \int_{S} \vec{v} \cdot \vec{r} \, dv$$

$$\vec{F} = hyz\vec{i} - y'\vec{j} + yz\vec{k}$$

$$\vec{V} \cdot \vec{F} = \begin{pmatrix} \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} & \vec{i} \vec{k} \frac{\partial}{\partial z} \end{pmatrix} + \begin{pmatrix} hxz\vec{i} - y^2y^2 + yz\vec{k} \end{pmatrix}$$

$$= \frac{2}{2x} (hxz) + \frac{\partial}{\partial y} (-y^2) + \frac{\partial}{\partial z} (yz)$$

$$= hz - y$$

$$\nabla \cdot \vec{F} = hz$$

$$\nabla \cdot \vec{F} = h$$

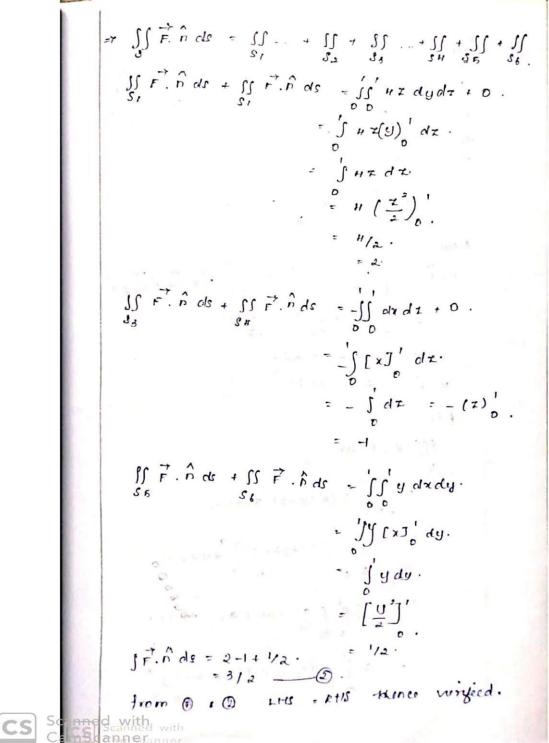
(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

CS						
Scanne						
nned						
Swith With					is . 1 on	→ A
tau.	^	F. n	ds	_lqn-	5	s F. n ds
AEGID	ì	HNI	dydz	2(=)	HZ	
Sa OBFC.	-i	- 4 x Z ·	dy dx.	H = 0	0	. 0
S3 EBFGI	Ĵ.	- y '	dx dx.	y = 1	-1	SSED dadz
SH DADC	-J	+43	dx of z	4:0	0	10
SE DOFC.	₹7	92	ola dy	X = 1	У	SS y dady
S6 OAFB	- K	- y z	dxdy	X = 0	0	0
JE FE				4		

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS



(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

Verily gauss observence theorem for

$$\vec{F} = x^2\vec{i} + y^2\vec{j} + z^2\vec{K}$$
 where \vec{J} is the subside formed by the subside formed by the planes $a = c$, $x = a$, $y = c$, $y = b$, the planes $a = c$, $x = a$, $y = c$, $y = b$,

Alew:

 $\vec{J} \cdot \vec{F} \cdot \vec{h} \cdot \vec{d}c = \iiint_{a} \nabla \cdot \vec{F} \cdot \vec{d}V$

Alew:

 $\vec{J} \cdot \vec{F} \cdot \vec{h} \cdot \vec{d}c = \iiint_{a} \nabla \cdot \vec{F} \cdot \vec{d}V$
 $\vec{J} \cdot \vec{F} \cdot \vec{h} \cdot \vec{d}c = \iiint_{a} \nabla \cdot \vec{F} \cdot \vec{d}V$
 $\vec{J} \cdot \vec{F} \cdot \vec{h} \cdot \vec{d}c = \iiint_{a} \nabla \cdot \vec{F} \cdot \vec{d}V$
 $\vec{J} \cdot \vec{F} \cdot \vec{h} \cdot \vec{d}c = \iiint_{a} \nabla \cdot \vec{F} \cdot \vec{d}V$
 $\vec{J} \cdot \vec{F} \cdot \vec{J} \cdot$

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$\begin{array}{lll}
 & 2 & \int_{0}^{C} \left[\frac{a^{2}b}{2} + \frac{ab^{2}}{2} + abz \right] dz \\
 & = a \left[\frac{a^{3}b}{2}z + \frac{ab^{2}z}{2} + abz^{2} \right] \\
 & = 2 \left[\frac{a^{3}bc}{2} + \frac{ab^{2}c}{2} + \frac{abc^{2}}{2} \right] \\
 & = 2 \frac{abc}{2} \left[a + b + c \right]$$

$$\begin{array}{lll}
 & = 2 \frac{abc}{2} \left[a + b + c \right] \\
 & = 3 \frac{abc}{2} \left[a + b + c \right]
\end{array}$$

Face	'n	F. ₽	ean	F.S on s	ds	JSF. A de
AEGID	77	x 2	$n = \alpha$	a 2	dydz.	Sadydz.
OBFC.	子	-x2	x = 0	0	dydz	O
EBF61	Jr	1 y 2	4 = 6	P .	dx dz	S b dudz
DADC	-)	- y 2	4:0	0	dxdr	0
DO FC	-T	12	T = @	e 2	dady	Pa gxdy
DAEB	-K	- 2)	2:0	0	dxdy.	0
			1			

$$\iint_{\mathcal{E}_{1}} \vec{F} \cdot \hat{n} \, ds + \iint_{\mathcal{E}_{2}} \vec{F} \cdot \hat{n} \, ds = \iint_{\mathcal{E}_{2}} \alpha' \, dy \, dz + 0$$

$$= \alpha^{2} \iint_{\mathcal{E}_{2}} b \, dz$$
with with

Scanned with with Canner maner

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

