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SECOND - ORDER SYSTEM

LLTTIT IO S

Second-order systems exhibit a wide range of responses which
must be analyzed and described.
» Whereas for a first-order system, varying a single
parameter changes the speed of response, changes in the
parameters of a second order system can change the form of
the response.

For example: a second-order system can display
characteristics much like a first-order system or, depending
on component values, display damped or pure oscillations
for its transient response.
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SECOND - ORDER SYSTEM

LLSTITUTIONS

- A general second-order system is characterized by the
following transfer function:

b
(5) =
() s +as+b

- We can re-write the above transfer function in the following
form (closed loop transfer function):

-
G(s) = -

sT 120 s+ 0
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SECOND - ORDER SYSTEM

o, (@ = 1.;"'5 ) referred to as the un-da(npe_d natural frequency of the
second order system, which is the frequency of
oscillation of the system without damping.

- referred to as the damping ratio of the second order
C (L = ) system, which is a measure of the degree of resistance
2D to change in the system output.

| 2
—opl+op\C" -1
Poles;
-0 — o, ﬂcz —1 Poles are complex if (< 1!

19ECT212/Control Systems/Unit 2/N.Arunkumar/AP/ECE 5/45



SECOND - ORDER SYSTEM

LLSTITUTIONS

- According the value of (, a second-order system can be set into
one of the four categories:

1. Overdamped - when the system has two real distinct
poles (¢ >1).

2. Underdamped - when the system has two complex
conjugate poles (0 <(<1)

3. Undamped - when the system has two imaginary poles
(¢=0).

4. Critically damped - when the system has two real but
equal poles (( =1).

6/45
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TIME-DOMAIN SPECIFICATION

Given that the closed loop TF

r=CO_ o

R(S) s*+2cw s+’

The system (2" order system) is parameterized by ¢ and w,

For 0< ¢ <1 and w, > 0, we like to investigate its response due to a unit
step input

()

S 7 /\\ N
i o) — =T
N | Two types of responses that are of
e — . ' interest:
g g B R — (A) Transient response
(B) Steady state response
Transient Steady State
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(A) For transient response
4 specifications:

7 —06
(a) T, - rise time = >
, 1-— -
7T
(b) T, - peak time = >
, 1-— -

43

e V" x100%

(c) %MP - percentage maximum overshoot =

4

Sy,

(d) T, - settling time (2% error) =

(B) Steady State Response

(a) Steady State error-NEXT TOPIC...
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Question : How are the performance
related to ¢and w,?

- Given a step input, i.e,, R(s) =1/s, then the system output (or step response) is;

C(s) = R(s)G(s) = D

s(s*+2lm s+ @)

- Taking inverse Laplace transform, we have the step response;

1 —La@t - [ =2 |
c(f) =l-—=——=e" 5111("9,,*”'1—5 I+H}
"||'II]. - - -
Where; :
‘o =2
af VI=c7 ! —1
8 = tan ——— 1. or O = cos (&)

e |
- ]

.,
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[T 710015

SECOND - ORDER SYSTEM

. ]
B3 =_*:'5'-}r: +jr:5’.},,ln,||'1—|f

Mapping the poles into s-plane
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Lets re-write the equation for c(t):

Let: L= AJ1— 5
= \/ } Damped natural frequency

0, > 0,

LLSTITUTIONS

Thus: 1
c(t) =1— T e sin(w,t + 6)

where 6O — cos t (f)

19ECT212/Control Systems/Unit 2/N.Arunkumar/AP/ECE 11745



L B

TRANSIENT RESPONSE ANALYSIS >

rrorion’s

1) Rise time, Tr. Time the response takes to rise from 0 to 100%

c(t)],_, =1- 1 oo sin(aw,t +8)=1

\ﬂ J | }

Y Y
=0 -0

-

sin(w, T, +60) =0

o, T +0=sin"(0)=7
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TRANSIENT RESPONSE ANALYSIS -

CLrITyTIonNs

2) Peak time, Tp - The peak time is the time required for the response
to reach the first peak, which is given by;

ct)) =0
t=T p
c(t) = —% (—cw,)e " sin(w,t + 0) — ™™ cos(w,t + 0) [a)n J-¢? ]: 0
t=T p
~50nTp o o162 |
S, e * 2T sm(a)dTIO +9) — [—ﬂg}e co,T, COS(a)dTp +9)
tan(a) dTp 4 0) _ \/1;? RN i -
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TRANSIENT RESPONSE ANALYSIS

LLSTITUTIONS

3) Percent overshoot, %0S - The percent overshoot is defined as the
amount that the waveform at the peak time overshoots the steady-

state value, which is expressed as a percentage of the steady-state
value.

C(T,)—C(x)

C(0)

MP = x100%

oR %0S — C max _—Cfmal < 100

Cfinal
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We know that tan(0) =tan(z + 6)

; Lo SR
So, tan(a, T, +6)=tan(z +0)

rrorion’s

From this expression:

oy T, +0=r+0

g1, =7
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LISTITUTION S

Wy

i
Y :
=—£e “vie sin[a)d (£]+6jx100%

- —%e =" sin(x + 0)x100%

sin(@)

g

__ s _
e V' x100% = e V" x100%
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N
5, =00, + Joy1-¢

ACTIVITY-GD

rrorion’s

Therefore,

- For given %0S, the damping ratio can be
solved from the above equation;

~ —In(%MP/100)
5T, 2 (0
R J72 +1n?(%MP /100)

# - ’ el
5 =_5mn_.ﬂ(9!‘u1_'~.-

- jﬁ" "}Irl - '.‘-.:
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TRANSIENT RESPONSE ANALYSIS =

CLrITyTIonNs

4) Setting time, Ts - The settling time is the time required for
the amplitude of the sinusoid to decay to 2% of the steady-
state value.

To find T,, we must find the time for which c(t) reaches & stays within +2% of
the steady state value, cg,,; The settling time is the time it takes for the
amplitude of the decaying sinusoid in c(t) to reach 0.02, or

g on's =0.02

N

Thus,
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UNDERDAMPED

LLSTITUTIONS

Example 2: Find the natural frequency and damping ratio for the
system with transfer function

36
G(s)=—
Solution: S°+4.25+36

Compare with general TF_

f_}] ewn=6
G(s) = <

£ =0.35

sT 200 s+ 0
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UNDERDAMPED

Example 3: Given the transfer function

100
5% +155+100

G(s5) =

find T, %0S, T

Solution:

w, =10 £=0.75

T, =0.533s, %0S = 2.838%, T = 0.4755
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UNDERDAMPED

| Second-Order Response Specificationsl
cit)
c:rm
7
[ 1 2\2%0S
[0\ - 2%
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b
2
s +as+b

G(s) =

a=9
| Crwardamped systam I
. 1
Risy==~ g C(s)
5 = =
s +95+9
2 poles. Mo reros.
C(s)= 9 9

S(s2+95+9)  S(s+7.854)(s+1.146)
s=0; s =-7.854; s =-1.146 ( two real poles)
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G(s) =

b

Underdamped Response

2
5

+as+ b

a=3

|Lln|:ler-;:larnp9-:l syslam I

1
R(s)=— C(s)

_ o
5° +35409

2 poles. Mo zeros.

c(t) =K, +e™* (K, cos 2.598t + K, sin 2.598t)

s=0;s=-1.5%j2.598 ( two complex poles)
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‘ Underdamped rEEpﬂnEEI
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b _—t

Gi(s) =
%) sT+as+b
a=0
|Un1:lam|::|ecl 5'_-.:’5’(&”1'
1
R(s)=— 0 C(s)
Y

x

=
L=

s 40

2 pales. Mo zeros.

c(t)=K,+K, cosat

s =0; s=%j3 ( two imaginary poles)
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L |

|Griticall1,r Damped Eysteml

9 C(s)

5T+ 65+9

c(t) =K, +K,e™ + K, te™
S =0;s=-3,-3 ( two real and equal poles)

2 poles. No zeros,
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‘E.:rilicallj,.r Damped Hespﬂnsel

ﬁ_P..m _.l:l:l |.'|'| :
| e ——— ¢
J S
F

3 .

- =1 i

- II
= |II
lr-a-l-:-==l-:-!'l-|----a-||'r
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SECOND - ORDER SYSTEM

| second-order responses I

undamped

crtically dampe=d
i1/ Lri’.r =M overdamplied

L -_. _.'

a , , , W A .
a (=8, 1 1.8 Z ] 3 kX 4

-

19ECT212/Control Systems/Unit 2/N.Arunkumar/AP/ECE 30/45



Swvstem Pole-zero Plot Response -

Gr(s)
. 1 :
R(s) — 5 H C(s)
() ————————— = - .
s+ as + b
General
o c(f) c(r)y= 1+ 0.171le 78337
1 1.1 71e 1.1467r
Gr(s) s-plane
. 1 .
R(s) = = [ (s
&) ———— s o
ST 9y +9 —7.854 —1.146
Overdamped
0 1 2 3 4 5 ‘
c() c(r) =1 —e Ycos/ 8¢ +""§ siny 87)
e 1_411_ = 1 — 1.006e “cos(~8r— 19.47")
1.2 |
() s-plane
) 1 : JA8 =
) R(s) = 35 [s] C(s) 0.8
< ] | T e
s2+ 25+ 9 — =g 0.6
1 ] 0.4 |
Underdamped x —JFV8 0.2
1 I I I 1
9] 1 2 3 4 5 ’
(1)
JFar 2‘“ c(ry = 1 —cos 3r
s-plane i B
G(s) S3
. 1 .
> R(s) — & o C(s) o 1L
52+ 9 —i3
Undamped
1 I 1
8] 1 2 3 4 5 ’
(1)
jm + - b 1 3 3 3¢
: Gr(s) s-plane 1 L c(f) = — 3fe — €
R(s) = 5 o C(s) 0.8
(&) —————— = =l B - 0.6
5=+ 65 + 9 o 0'4 —
Critically damped —3 0:2 -
I I I I I
8] 1 2 3 4 5 ’
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EFFECT OF DIFFERENT DAMPING
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UNDERDAMPED SYSTEM

For 0< <1 and w, > 0, the 2" order system’s response due to a unit step input:
Important timing characteristics: delay time, rise time, peak time, maximum overshoot,
and settling time.

T TIoS

Allowable tolerance
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DELAY TIME

* The delay (t,) time is the time required for the response to reach half the =777/
final value the very first time.

c(t) A

Allowable tolerance

~— [ —»

A
et
Y
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Rise Time

* The rise time is the time required for the response to rise from 10% to 90%, 5% to
95%, or 0% to 100% of its final value.

* For underdamped second order systems, the 0% to 100% rise time is normally used.
For overdamped systems, the 10% to 90% rise time is commonly used.

Allowable tolerance

0.5
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PEAK TIME

LLSTITUTIONS

* The peak time is the time required for the response to reach the first peak of
the overshoot.

c(t) A

Allowable tolerance
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Maximum Overshoot

The maximum overshoot is the maximum peak value of the
response curve measured from unity.

If the final steady-state value of the response differs from unity,

then it is common to use the maximum percent overshoot. It is

defined by

: C(rp) — ¢(00)
Maximum percent overshoot = ¢(00) X 100%

The amount of the maximum (percent) overshoot directly
indicates the relative stability of the system.

LLTTIT IO S
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Settling Time

- - : : : LISTITUTIONS
 The settling time is the time required for the response curve to reach and o 7

stay within a range about the final value of size specified by absolute
percentage of the final value (usually 2% or 5%).

Allowable tolerance
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STEP RESPONSE OF UNDERDAMPED
SYSTEM

2
Oy Step Response a)ﬁ
R(S) 2 0 2 (S) — )
$” +2¢w,s + w; (S + 20w, S+a))

LLSTITUTIONS

* The partial fraction expansion of above equation is given as

1 S+ 20w
Cls)=t - ST26C
S S"+20w,S+ o,

C (S) - S+ 2;&) \//
(S+2§a)n)2 S <S ;+ 2§a) S+§za)§Ea}2 ézwr%)

C(S):l— S+ 24w,

S (S+§a)n)2 +a)ﬁ(1—§2)
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STEP RESPONSE OF UNDERDAMPED
SYSTEM

1 S+ 2w
C(s)=—- L
V7S (s+§wn)2+w§(1—g2)

* Above equation can be written as

LLSTITUTIONS

1 S+ 20w
Cls) =L - L.
S (S + ,{a)n) + W
 Where o, =w,41-¢* ,is the frequency of transient oscillations
and is called damped natural frequency.

* The inverse Laplace transform of above equation can be obtained
easily if C(s) is written in the following form:

C(S)zl— S+ dw, B qon

2

S (S+/,“a)n)2 +co§ (S+§’a)n)2 + wj
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STEP RESPONSE OF UNDERDAMPED

SYSTEM

1 S+ lw Cw

C(s) == - n__ n
Y S (s+§a)n)2+a)§ (s+§a)n)2+a)§
c -2

Cls)=di___S*eO [1-¢°

S (s+§a)n)2+a)§ (s+§a)n)2+a)§
Cle)=toSHe® ¢ &

S (S+;’a)n)2+a)§ 1_42 (S+/;a)n)2+a)§

c(t) =1—e*“ cos myt — c__géot

sin wyt

J1-¢72
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STEP RESPONSE OF UNDERDAMPED
SYSTEM

c(t) =1-e*“ cos wyt —

é/ e—g“a)nt
-2

g
-2

Sin C()dt

c(t) =1-e*“'| cos Wyt +

Sin a)dt

. =0
When ¢ 0y = o, /1_[;2
:a)n

c(t) =1-cosw,t

19ECT212/Control Systems/Unit 2/N.Arunkumar/AP/ECE 42/4



STEP RESPONSE OF UNDERDAMPED
SYSTEM

4

c(t) = 1—e "'} cos w4t +

sin gyt

-2

If =01 and a)n_=3 _

1.8¢

1.6

1.4

1.2

1~

0.8

0.6

0.4

0.2
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STEP RESPONSE OF UNDERDAMPED
SYSTEM ]

c(t) =1-e*“'| cos Wyt +

If £=05 and w,=3

1l4¢
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SUMMARY [SITTUTIO8S
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