

SNS COLLEGE OF TECHNOLOGY

Coimbatore-20 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECT212 – CONTROL SYSTEMS

II YEAR/ IV SEMESTER

UNIT I – CONTROL SYSTEM MODELING

TOPIC 5- MODELING OF ELECTRIC SYSTEMS

19ECT212/Control Systems/Unit 1/N.Arunkumar /AP/ECE

•REVIEW ABOUT PREVIOUS CLASS •TYPES OF SYSTEMS •DYNAMIC SYSTEMS •WAYS TO STUDY A SYSTEM •MODEL & ITS NEEDS, TYPES •ACTIVITY •MODELING OF ELECTRICAL SYSTEMS(R,L,C) •V-I AND I-V RELATIONS •EXAMPLES •SUMMARY

TYPES OF SYSTEMS

- **Static System:** If a system does not change with time, it is called a static system.
- **Dynamic System:** If a system changes with time, it is called a dynamic system.

DYNAMIC SYSTEMS

- A system is said to be dynamic if its current output may depend on the past history as well as the present values of the input variables.
- Mathematically,

 $y(t) = \varphi[u(\tau), 0 \le \tau \le t]$ u: Input, t: Time

Example: A moving mass

<u>Model</u>: Force=Mass x Acceleration

WAYS TO STUDY A SYSTEM

- A *model* is a simplified representation or abstraction of reality.
- Reality is generally too complex to model exactly.
- A set of mathematical equations (e.g., differential eqs.) that describes the input-output behavior of a system.

What is a model used for?

- Simulation
- Prediction/Forecasting
- Prognostics/Diagnostics
- Design/Performance Evaluation
- Control System Design

BLACK BOX MODEL

- When only input and output are known.
- Internal dynamics are either too complex or unknown.

GREY BOX MODEL

• When input and output and some information about the internal dynamics of the system is known.

• Easier than white box Modelling.

WHITE BOX MODEL

• When input and output and internal dynamics of the system is known.

• One should know complete knowledge of the system to derive a white box model.

ACTIVITY

Fill the empty circle 2 3 (1) $\overline{(7)}$ (4)(5) (4) (6) 3 6 (2)(0)(4)(1)(10) 89 (6) $\overline{7}$ \bigcirc 8 6) 2

BASIC ELEMENTS OF ELECTRICAL SYSTEMS

Symbol +

• The time domain expression relating voltage and current for the resistor is given by Ohm's law

 $v_R(t) = i_R(t)R$

• The Laplace transform of the above equation is

$$V_R(s) = I_R(s)R$$

• The time domain expression relating voltage and current for the Capacitor is given as:

$$v_c(t) = \frac{1}{C} \int i_c(t) dt$$

• The Laplace transform of the above equation (assuming there is no charge stored in the capacitor) is

$$V_c(s) = \frac{1}{Cs} I_c(s)$$

BASIC ELEMENTS OF ELECTRICAL SYSTEMS

Inductor

• The time domain expression relating voltage and current for the inductor is given as:

$$v_L(t) = L \frac{di_L(t)}{dt}$$

• The Laplace transform of the above equation (assuming there is no energy stored in inductor) is

$$V_L(s) = LsI_L(s)$$

V-I AND I-V RELATIONS

Component	Symbol	V-I Relation	I-V Relation
Resistor		$v_R(t) = i_R(t)R$	$i_R(t) = \frac{v_R(t)}{R}$
Capacitor	-++	$v_c(t) = \frac{1}{C} \int i_c(t) dt$	$i_c(t) = C \frac{dv_c(t)}{dt}$
Inductor		$v_L(t) = L \frac{di_L(t)}{dt}$	$i_L(t) = \frac{1}{L} \int v_L(t) dt$

• The two-port network shown in the following figure has $v_i(t)$ as the input voltage and $v_o(t)$ as the output voltage. Find the transfer function $V_o(s)/V_i(s)$ of the network.

$$v_i(t) = i(t)R + \frac{1}{C}\int i(t)dt \qquad v_o(t) = \frac{1}{C}\int i(t)dt$$

$$v_i(t) = i(t)R + \frac{1}{C}\int i(t)dt \qquad v_o(t) = \frac{1}{C}\int i(t)dt$$

• Taking Laplace transform of both equations, considering initial conditions to zero.

$$V_i(s) = I(s)R + \frac{1}{Cs}I(s) \qquad V_o(s) = \frac{1}{Cs}I(s)$$

• Re-arrange both equations as:

$$V_i(s) = I(s)(R + \frac{1}{Cs})$$

$$CsV_o(s) = I(s)$$

$$V_i(s) = I(s)(R + \frac{1}{Cs}) \qquad CsV_o(s) = I(s)$$

• Substitute I(s) in equation on left

$$V_i(s) = CsV_o(s)\left(R + \frac{1}{Cs}\right)$$
$$\frac{V_o(s)}{V_i(s)} = \frac{1}{Cs\left(R + \frac{1}{Cs}\right)}$$
$$\frac{V_o(s)}{V_i(s)} = \frac{1}{1 + RCs}$$

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{1 + RCs}$$

• The system has one pole at

$$1 + RCs = 0 \qquad \implies s = -\frac{1}{RC}$$

• Design an Electrical system that would place a pole at -3 if added to the other system.

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{1 + RCs}$$

RC

 $\frac{1}{RC}$

• System has one pole at

$$R = 1 M\Omega \quad and \quad C = 333 \ pF$$

• Therefore,

if

19ECT212/Control Systems/Unit 1/N.Arunkumar /AP/ECE