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Structure of the Page Table

• Memory structures for paging can get huge using 
straight-forward methods
• Consider a 32-bit logical address space as on modern 

computers
• Page size of 4 KB (212)
• Page table would have 1 million entries (232 / 212)
• If each entry is 4 bytes -> 4 MB of physical address 

space / memory for page table alone
• That amount of memory used to cost a lot
• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging
• Hashed Page Tables
• Inverted Page Tables
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Hierarchical Page Tables

• Break up the logical address space 
into multiple page tables

• A simple technique is a two-level page 
table

• We then page the page table
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Two-Level Page-Table Scheme
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Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page size) is 
divided into:
• a page number consisting of 22 bits
• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further 
divided into:
• a 12-bit page number 
• a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the 
displacement within the page of the inner page table

• Known as forward-mapped page table
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Address-Translation Scheme
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64-bit Logical Address Space

• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)
• Then page table has 252 entries
• If two level scheme, inner page tables could be 210 4-byte 

entries
• Address would look like

• Outer page table has 242 entries or 244 bytes
• One solution is to add a 2nd outer page table
• But in the following example the 2nd outer page table is still 234

bytes in size
• And possibly 4 memory access to get to one physical memory 

location
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Three-level Paging Scheme
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Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table
• This page table contains a chain of elements hashing to the same 

location

• Each element contains (1) the virtual page number (2) the 
value of the mapped page frame (3) a pointer to the next 
element

• Virtual page numbers are compared in this chain 
searching for a match
• If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables
• Similar to hashed but each entry refers to several pages (such as 

16) rather than 1
• Especially useful for sparse address spaces (where memory 

references are non-contiguous and scattered) 
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Hashed Page Table
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Inverted Page Table

• Rather than each process having a page table and keeping 
track of all possible logical pages, track all physical pages

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in 
that real memory location, with information about the 
process that owns that page

• Decreases memory needed to store each page table, but 
increases time needed to search the table when a page 
reference occurs

• Use hash table to limit the search to one — or at most a 
few — page-table entries
• TLB can accelerate access

• But how to implement shared memory?
• One mapping of a virtual address to the shared physical 

address
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Inverted Page Table Architecture
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Oracle SPARC Solaris

• Consider modern, 64-bit operating system 
example with tightly integrated HW
• Goals are efficiency, low overhead

• Based on hashing, but more complex

• Two hash tables
• One kernel and one for all user processes
• Each maps memory addresses from virtual to 

physical memory
• Each entry represents a contiguous area of mapped 

virtual memory,
• More efficient than having a separate hash-table entry for 

each page

• Each entry has  base address and  span (indicating 
the number of pages the entry represents)
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Oracle SPARC Solaris (Cont.)

• TLB holds translation table entries (TTEs) for fast 
hardware lookups
• A cache of TTEs reside in a translation storage buffer 

(TSB)
• Includes an entry per recently accessed page

• Virtual address reference causes TLB search 
• If miss, hardware walks the in-memory TSB looking 

for the TTE corresponding to the address
• If match found, the CPU copies the TSB entry into the TLB 

and translation completes
• If no match found, kernel interrupted to search the hash 

table
• The kernel then creates a TTE from the appropriate hash 

table and stores it in the TSB, Interrupt handler returns 
control to the MMU, which completes the address 
translation. 
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