
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Mr.N.Selvakumar

Assistant Professor

Department of Computer Science and Engineering

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – III Storage Management

Topic: Memory Management : Structure of the Page Table

Structure of the Page Table

• Memory structures for paging can get huge using
straight-forward methods
• Consider a 32-bit logical address space as on modern

computers
• Page size of 4 KB (212)
• Page table would have 1 million entries (232 / 212)
• If each entry is 4 bytes -> 4 MB of physical address

space / memory for page table alone
• That amount of memory used to cost a lot
• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging
• Hashed Page Tables
• Inverted Page Tables

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 2

Hierarchical Page Tables

• Break up the logical address space
into multiple page tables

• A simple technique is a two-level page
table

• We then page the page table

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 3

Two-Level Page-Table Scheme

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Structure of the Page Table/

Mrs.M.Lavanya/AP/CSE/SNSCT
4

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page size) is
divided into:
• a page number consisting of 22 bits
• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further
divided into:
• a 12-bit page number
• a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

• Known as forward-mapped page table

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 5

Address-Translation Scheme

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 6

64-bit Logical Address Space

• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)
• Then page table has 252 entries
• If two level scheme, inner page tables could be 210 4-byte

entries
• Address would look like

• Outer page table has 242 entries or 244 bytes
• One solution is to add a 2nd outer page table
• But in the following example the 2nd outer page table is still 234

bytes in size
• And possibly 4 memory access to get to one physical memory

location

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 7

Three-level Paging Scheme

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 8

Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table
• This page table contains a chain of elements hashing to the same

location

• Each element contains (1) the virtual page number (2) the
value of the mapped page frame (3) a pointer to the next
element

• Virtual page numbers are compared in this chain
searching for a match
• If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables
• Similar to hashed but each entry refers to several pages (such as

16) rather than 1
• Especially useful for sparse address spaces (where memory

references are non-contiguous and scattered)

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 9

Hashed Page Table

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Structure of the Page Table/

Mrs.M.Lavanya/AP/CSE/SNSCT
10

Inverted Page Table

• Rather than each process having a page table and keeping
track of all possible logical pages, track all physical pages

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

• Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

• Use hash table to limit the search to one — or at most a
few — page-table entries
• TLB can accelerate access

• But how to implement shared memory?
• One mapping of a virtual address to the shared physical

address

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 11

Inverted Page Table Architecture

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Structure of the Page Table/

Mrs.M.Lavanya/AP/CSE/SNSCT
12

Oracle SPARC Solaris

• Consider modern, 64-bit operating system
example with tightly integrated HW
• Goals are efficiency, low overhead

• Based on hashing, but more complex

• Two hash tables
• One kernel and one for all user processes
• Each maps memory addresses from virtual to

physical memory
• Each entry represents a contiguous area of mapped

virtual memory,
• More efficient than having a separate hash-table entry for

each page

• Each entry has base address and span (indicating
the number of pages the entry represents)

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 13

Oracle SPARC Solaris (Cont.)

• TLB holds translation table entries (TTEs) for fast
hardware lookups
• A cache of TTEs reside in a translation storage buffer

(TSB)
• Includes an entry per recently accessed page

• Virtual address reference causes TLB search
• If miss, hardware walks the in-memory TSB looking

for the TTE corresponding to the address
• If match found, the CPU copies the TSB entry into the TLB

and translation completes
• If no match found, kernel interrupted to search the hash

table
• The kernel then creates a TTE from the appropriate hash

table and stores it in the TSB, Interrupt handler returns
control to the MMU, which completes the address
translation.

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 14

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT

15

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

 R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

 R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Structure of the Page Table/ Mrs.M.Lavanya/AP/CSE/SNSCT 16

	Slide 1: SNS COLLEGE OF TECHNOLOGY Coimbatore-35. An Autonomous Institution Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
	Slide 2: Structure of the Page Table
	Slide 3: Hierarchical Page Tables
	Slide 4: Two-Level Page-Table Scheme
	Slide 5: Two-Level Paging Example
	Slide 6: Address-Translation Scheme
	Slide 7: 64-bit Logical Address Space
	Slide 8: Three-level Paging Scheme
	Slide 9: Hashed Page Tables
	Slide 10: Hashed Page Table
	Slide 11: Inverted Page Table
	Slide 12: Inverted Page Table Architecture
	Slide 13: Oracle SPARC Solaris
	Slide 14: Oracle SPARC Solaris (Cont.)
	Slide 15
	Slide 16:

