
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Mr.N.Selvakumar

Assistant Professor

Department of Computer Science and Engineering

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II Overview and Process Management

Topic: Process Concept : Inter Process Communication

Interprocess Communication

19CSB201 – Operating Systems/ Unit-I/ Overview and Process Management/ Process Concept :
Inter Process Communication 2

A process can be of 2 types

• A process is independent if it cannot affect or be affected by the
other processes executing in the system.

Any process that does not share data with any other process is
independent.

• A process is cooperating if it can affect or be affected by the other
processes executing in the system.

Clearly, any process that shares data with other processes is a
cooperating process.

Cooperating processes require an interprocess communication (IPC)
mechanism that will allow them to exchange data and information.

Reasons for providing process cooperation

• Information sharing. Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to such information.

• Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer has
multiple processing cores.

• Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads.

• Convenience. Even an individual user may work on many tasks at the same
time. For instance, a user may be editing, listening to music, and compiling in
parallel.

3

Models of IPC
Cooperating processes require an interprocess communication (IPC)
mechanism that will allow them to exchange data and information.

There are two fundamental models of interprocess communication:
shared memory and message passing.

• In the shared-memory model, a region of memory that is shared by
cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region.

• In the message-passing model, communication takes place by means
of messages exchanged between the cooperating processes.

4

Message passing is useful for exchanging smaller amounts of data, because no conflicts
need be avoided.

Shared memory can be faster than message passing, since message-passing systems are
typically implemented using system calls. Shared memory suffers from cache coherency
issues, which arise because shared data migrate among the several caches.

5

Shared-Memory Systems
Establish a region of shared memory

A shared-memory region resides in the address space of the
process creating the shared-memory segment. Other processes that
wish to communicate using this shared-memory segment must attach it
to their address space.

Example

producer–consumer problem

• producer process produces information that is consumed by a
consumer process. The producer and consumer must be
synchronized.

6

7

The producer–consumer problem uses shared memory

This buffer will reside in a region of memory that is shared by the
producer and consumer processes. A producer can produce one item
while the consumer is consuming another item.

Two types of buffers can be used.

The unbounded buffer places no practical limit on the size of the
buffer. The consumer may have to wait for new items, but the producer
can always produce new items.

The bounded buffer assumes a fixed buffer size. In this case, the
consumer must wait if the buffer is empty, and the producer must wait
if the buffer is full.

8

Memory shared by the producer and consumer processes

9

Message-Passing Systems
Message passing provides a mechanism to allow processes to
communicate and to synchronize their actions without sharing the
same address space.

It is particularly useful in a distributed environment, where the
communicating processes may reside on different computers
connected by a network.

A message-passing facility provides at least two operations:

• send(message)
• receive(message)

10

Methods for logically implementing a link and the send()/receive()
operations:

• Direct or indirect communication

• Synchronous or asynchronous communication

• Automatic or explicit buffering

11

Naming
Direct communication, each process that wants to communicate must
explicitly name the recipient or sender of the communication.

A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes
that want to communicate. The processes need to know only each
other’s identity to communicate.

• A link is associated with exactly two processes.

• Between each pair of processes, there exists exactly one link.

12

In this scheme, the send() and receive() primitives are defined as:

• send(P, message)—Send a message to process P.

• receive(Q, message)—Receive a message from process Q.

This scheme exhibits symmetry in addressing; that is, both the sender
process and the receiver process must name the other to
communicate.

13

A variant of this scheme employs asymmetry in addressing. Here, only
the sender names the recipient; the recipient is not required to name
the sender.

In this scheme, the send() and receive() primitives are defined as
follows:

• send(P, message)—Send a message to process P.

• receive(id, message)—Receive a message from any process. The
variable id is set to the name of the process with which communication
has taken place.

14

Indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object
into which messages can be placed by processes and from which
messages can be removed.

Each mailbox has a unique identification.

Two processes can communicate only if they have a shared mailbox.

The send() and receive() primitives are defined as follows:

• send(A, message)—Send a message to mailbox A.

• receive(A, message)—Receive a message from mailbox A.

15

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both
members of the pair have a shared mailbox.

• A link may be associated with more than two processes.

• Between each pair of communicating processes, a number of
different links may exist, with each link corresponding to one mailbox.

16

A mailbox may be owned either by a process or by the operating
system.

The operating system then must provide a mechanism that allows a
process to do the following:

• Create a new mailbox.

• Send and receive messages through the mailbox.

• Delete a mailbox.

17

Synchronization
Message passing may be either blocking or nonblocking— also known
as synchronous and asynchronous.

Different combinations of send() and receive() are possible.

• Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

• Nonblocking send. The sending process sends the message and
resumes operation.

• Blocking receive. The receiver blocks until amessage is available.

• Nonblocking receive. The receiver retrieves either a valid message or
a null.

18

19

Buffering

Whether communication is direct or indirect, messages exchanged by
communicating processes reside in a temporary queue.

Basically, such queues can be implemented in three ways:

• Zero capacity

• Bounded capacity

• Unbounded capacity

20

• Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

• Bounded capacity. The queue has finite length n; thus, at most n messages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer to
the message is kept), and the sender can continue execution without
waiting. The link’s capacity is finite, however. If the link is full, the sender
must block until space is available in the queue.

• Unbounded capacity. The queue’s length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering. The other cases are referred to as systems with automatic
buffering.

21

22

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

 R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

 R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

23

	Slide 1: SNS COLLEGE OF TECHNOLOGY Coimbatore-35. An Autonomous Institution Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
	Slide 2: Interprocess Communication
	Slide 3: Reasons for providing process cooperation
	Slide 4: Models of IPC
	Slide 5:
	Slide 6: Shared-Memory Systems
	Slide 7:
	Slide 8:
	Slide 9: Memory shared by the producer and consumer processes
	Slide 10: Message-Passing Systems
	Slide 11:
	Slide 12: Naming
	Slide 13:
	Slide 14:
	Slide 15:
	Slide 16:
	Slide 17:
	Slide 18: Synchronization
	Slide 19:
	Slide 20: Buffering
	Slide 21:
	Slide 22
	Slide 23:

