

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) COIMBATORE-641 035, TAMIL NADU

Weighted residual formulation

Solve the differential Equation for a physical problem expressed as $\frac{d^{v}y}{dx^{v}} + 100 = 0$, $0 \le x \le 10$. With boundary Conditions as yeos=0, yeos=0, xeos=0, using (i) Point collection method (ii) sub - domain collection method in Least square method in malerkein's method. S& Given data $\frac{d^2 y}{dx^2} + 100 = 0 \qquad 0 \le x \le 10$ I is stange of o to co Boundary condition y(0)=0 8(10) = 0 Trail function, consider as

Trail function, consider as polynomial function, y = a, +a2x+a3x" boundary condition x=0, 8=0 8(0) = a, +a, (0) + a3(0) o = a, a,=0) let x=10 , y=10 y(10) = 0, +0, + 0, x + 0, x × 0 = a1 + a2 (10) + a3 (10) 0 1002 + 10003 100 - - 10003

 $\therefore Q_{1} = 0 \quad Q_{2} = -10Q_{3}$ $a_{1}, a_{2} \quad \text{values are substituted in } Eq_{2}$ $b_{1} = Q_{1} + Q_{2} + Q_{3} x^{2}$ $= 0 + (-10Q_{3}) x + Q_{3} x^{2}$ $= -10Q_{3} x + Q_{3} x^{2}$ $= a_{3} x [x - 10]$ $= a_{3} x [x - 10] \quad (\cdots Q_{3} = Q)$ $\text{tience trail-function } b_{1} = a_{3} (x - 10)$ uow. differentiate the above Equation w.r.t.x $b_{1} = Q x^{2} - 10Q(1)$

Now differentiate the above Equation w.r.t x $y = ax^{V} - 10ax$ $\frac{dy}{dx} = a(ax) - 10a(1)$ $\frac{dy}{dx} = ax - 10a$ again differentiate the above Equation co.r.t x. $\frac{d^{V}y}{dx^{V}} = aa(1) - 10a(0)$ $\frac{d^{V}y}{dx^{V}} = aa$

sunstitute	<u>dry</u> drv	value.	ŝn	Eg (1)	d 4 + 100
	R =	20+100]		