

#### **SNS COLLEGE OF TECHNOLOGY**

Coimbatore-35 An Autonomous Institution



Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

#### **DEPARTMENT OF AEROSPACE ENGINEERING**

#### 19ASB304 - COMPUTATIONAL FLUID DYNAMICS FOR AEROSPACE APPLICATIONS III YEAR VI SEM UNIT-II DISCRETIZATION TOPIC: Boundary layer equations and methods of solution

NAME: Mr.N.Venkatesh., M.Tech Assistant Professor Aerospace Engineering SNS College of Technology



### Overview

- Structured vs. Unstructured meshing approaches
- Development of an efficient unstructured grid solver
  - Discretization
  - Multigrid solution
  - Parallelization
- Examples of unstructured mesh CFD capabilities
  - Large scale high-lift case
  - Typical transonic design study
- Areas of current research
  - Adaptive mesh refinement
  - Moving and overlapping meshes

#### **CFD** Perspective on Meshing Technology

- CFD Initiated in Structured Grid Context
  - Transfinite Interpolation
  - Elliptic Grid Generation
  - Hyperbolic Grid Generation
- Smooth, Orthogonal Structured Grids
- Relatively Simple Geometries

#### **CFD** Perspective on Meshing Technology

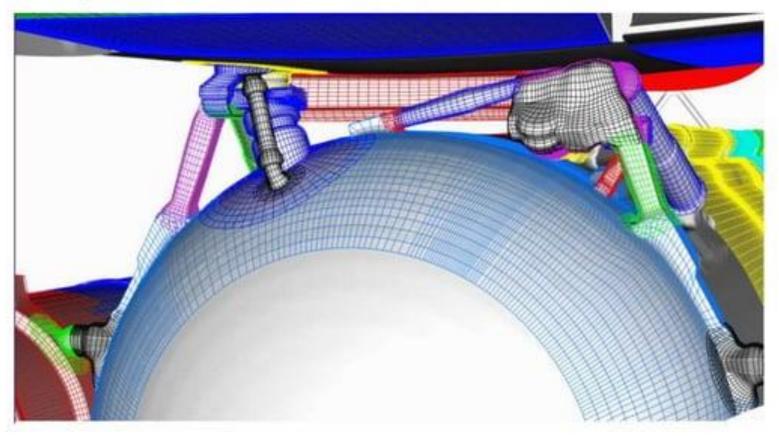
 Sophisticated Multiblock Structured Grid Techniques for Complex Geometries



Engine Nacelle Multiblock Grid by commercial software TrueGrid.

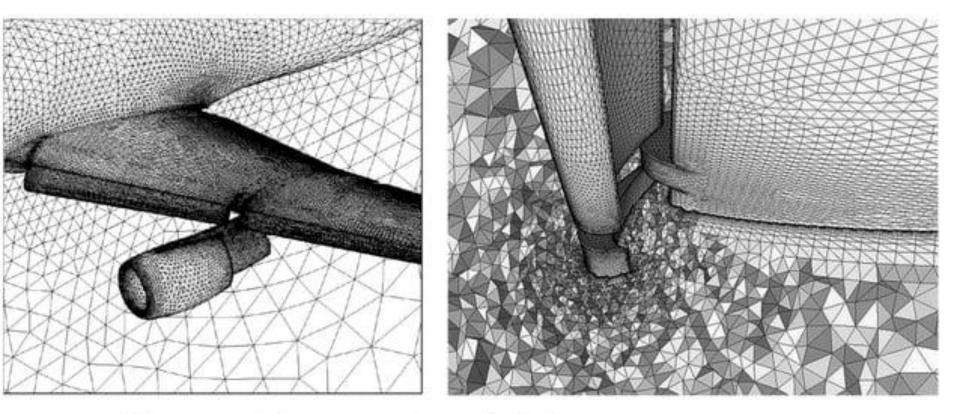
#### **CFD** Perspective on Meshing Technology

 Sophisticated Overlapping Structured Grid Techniques for Complex Geometries



Overlapping grid system on space shuttle (Slotnick, Kandula and Buning 1994)

### Unstructured Grid Alternative

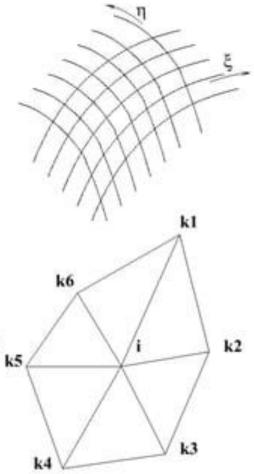


- · Connectivity stored explicitly
- Single Homogeneous Data Structure

### Characteristics of Both Approaches

#### Structured Grids

- Logically rectangular
- Support dimensional splitting algorithms
- Banded matrices
- Blocked or overlapped for complex geometries
- · Unstructured grids
  - Lists of cell connectivity, graphs (edge, vertices)
  - Alternate discretizations/solution strategies
  - Sparse Matrices
  - Complex Geometries, Adaptive Meshing
  - More Efficient Parallelization

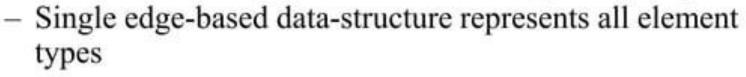


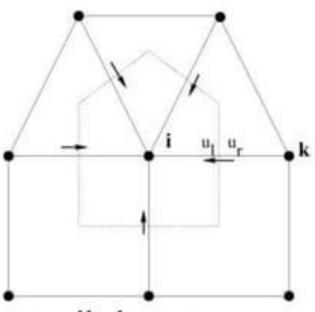
### Discretization

- Governing Equations: Reynolds Averaged Navier-Stokes Equations
  - Conservation of Mass, Momentum and Energy
  - Single Equation turbulence model (Spalart-Allmaras)
    - Convection-Difusion Production
- Vertex-Based Discretization
  - 2nd order upwind finite-volume scheme
  - 6 variables per grid point
  - Flow equations fully coupled (5x5)
  - Turbulence equation uncoupled

## Spatial Discretization

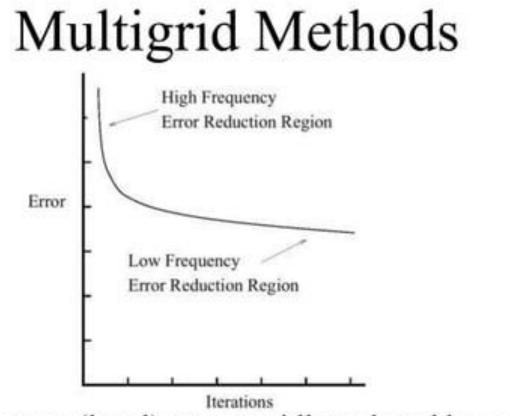
- Mixed Element Meshes
  - Tetrahedra, Prisms, Pyramids, Hexahedra
- Control Volume Based on Median Duals
  - Fluxes based on edges
    - $\ast \; \mathbf{F_{ik}} = f(\mathbf{u_{left}}, \mathbf{u_{right}})$
    - $* \ \mathbf{u_{left}} = \mathbf{u_i}, \mathbf{u_{right}} = \mathbf{u_k} \text{: 1st order accurate}$
    - \*  $\mathbf{u_{left}} = \mathbf{u_i} + \frac{1}{2} \nabla \mathbf{u_i}.\mathbf{r_{ik}}$
    - \*  $\mathbf{u}_{right} = \mathbf{u}_k + \frac{1}{2} \nabla \mathbf{u}_k.\mathbf{r}_{ki}$ : 2nd order accurate
    - $* \nabla u_i$  evaluated as contour integral around CV





# Spatially Discretized Equations $\frac{du}{dt} + \mathbf{R}(\mathbf{u}) = 0$

- Integrate to Steady-state
- Explicit:  $u^{n+1} = u^n \Delta t \mathbf{R}(\mathbf{u}^n)$ 
  - Simple, Slow: Local procedure
- Implicit  $(\frac{I}{\Delta t} + \frac{\partial \mathbf{R}}{\partial u})(u^{n+1} u^n) = -\Delta t \mathbf{R}(\mathbf{u}^n)$ 
  - Large Memory Requirements
- Matrix Free Implicit:  $\frac{\partial \mathbf{R}}{\partial \mathbf{u}} \Delta u = \frac{\mathbf{R}(\mathbf{u} + \epsilon \Delta \mathbf{u}) \mathbf{R}(\mathbf{u})}{\epsilon}$ – Most effective with matrix preconditioner
- Multigrid Methods



- High-frequency (local) error rapidly reduced by explicit methods
- Low-Frequence (global) error converges slowly
- On coarser grid:
  - Low-frequency viewed as high frequency

### Multigrid Correction Scheme (Linear Problems)

$$L_h u_h = f_h$$

$$L_h \overline{u}_h - f_h = r_h$$

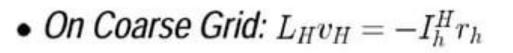
$$u_h = \overline{u}_h + v_h$$

$$L_h u_h - L_h \overline{u}_h = -r_h$$

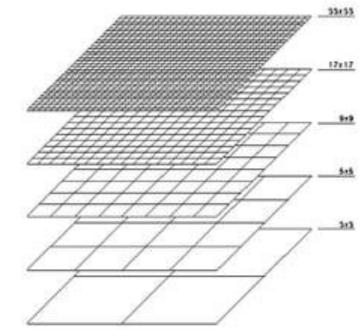
$$L_h v_h = -r_h$$



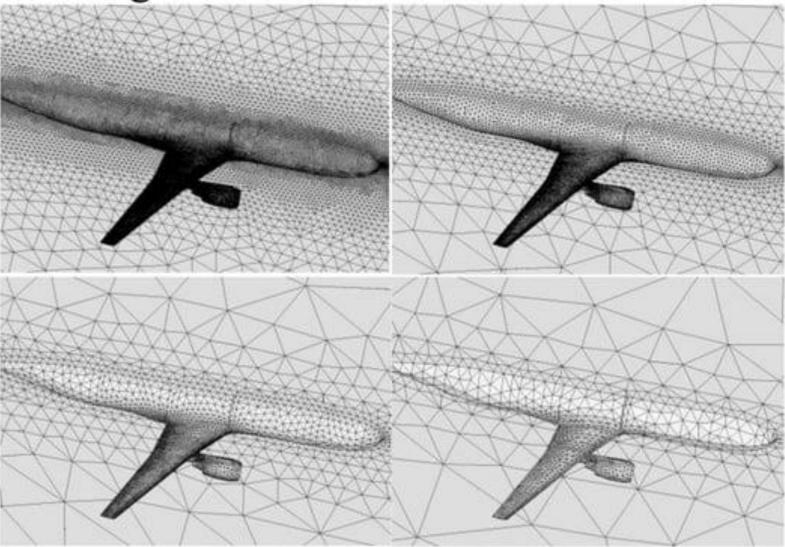
$$L_h v_h = -r_h$$



• Correct Fine Grid as:  $\overline{u}_h^{new} = \overline{u}_h + I_H^h v_H$ 

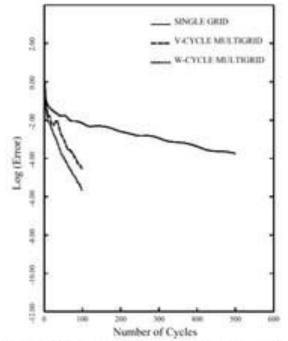


### Multigrid for Unstructured Meshes



- · Finest grid: 804,000 points, 4.5M tetrahedra
- Four level Multigrid sequence

### Geometric Multigrid



- Order of magnitude increase in convergence
- Convergence rate equivalent to structured grid schemes
- Independent of grid size: O(N)

Cornell University, September 17,2002 Ithaca New York, USA

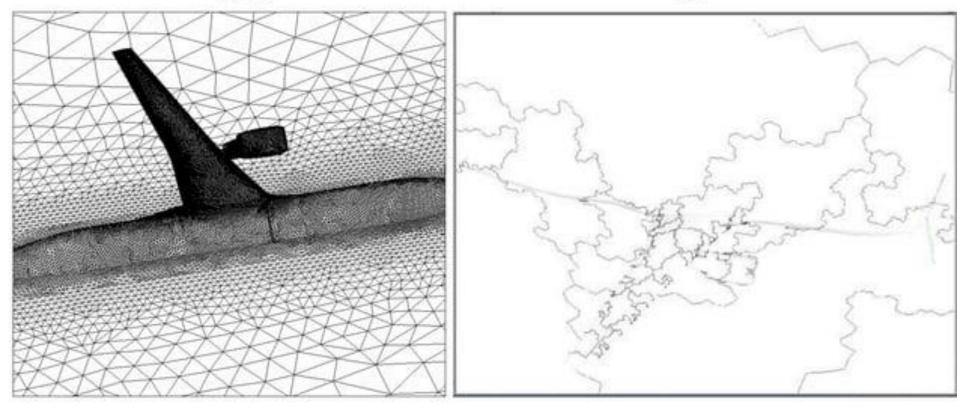
### Agglomeration vs. Geometric Multigrid

- Multigrid methods:
  - Time step on coarse grids to accelerate solution on fine grid
- Geometric multigrid
  - Coarse grid levels constructed manually
  - Cumbersome in production environment
- Agglomeration Multigrid
  - Automate coarse level construction
  - Algebraic nature: summing fine grid equations
  - Graph based algorithm

### **Agglomeration Multigrid**

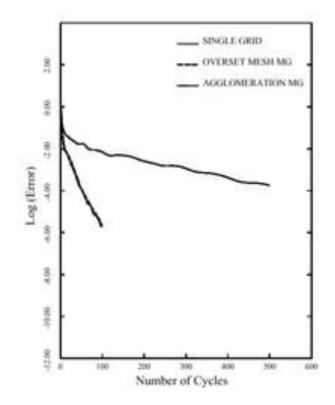
- Agglomeration Multigrid solvers for unstructured meshes
  - Coarse level meshes constructed by agglomerating fine grid cells/equations

### **Agglomeration Multigrid**



- Automated Graph-Based Coarsening Algorithm
- Coarse Levels are Graphs
- Coarse Level Operator by Galerkin Projection
- Grid independent convergence rates (order of magnitude improvement)

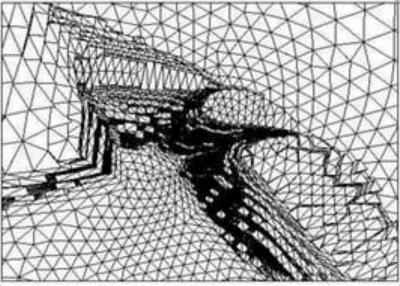
### Agglomeration MG for Euler Equations



- Convergence rate similar to geometric MG
- Completely automatic

### Anisotropy Induced Stiffness

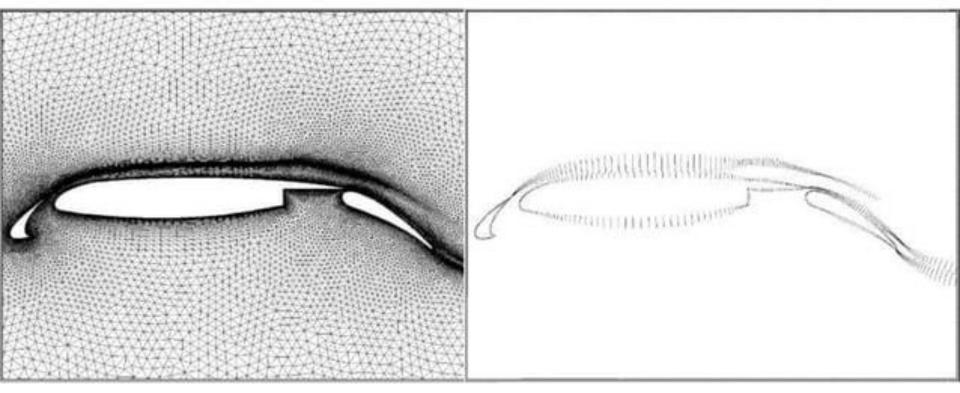
- Convergence rates for RANS (viscous) problems much slower then inviscid flows
  - Mainly due to grid stretching
  - Thin boundary and wake regions
  - Mixed element (prism-tet) grids



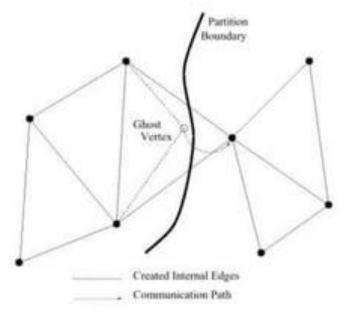
- Use directional solver to relieve stiffness
  - Line solver in anisotropic regions

#### Directional Solver for Navier-Stokes Problems

- Line Solvers for Anisotropic Problems
  - Lines Constructed in Mesh using weighted graph algorithm
  - Strong Connections Assigned Large Graph Weight
  - (Block) Tridiagonal Line Solver similar to structured grids



### Implementation on Parallel Computers



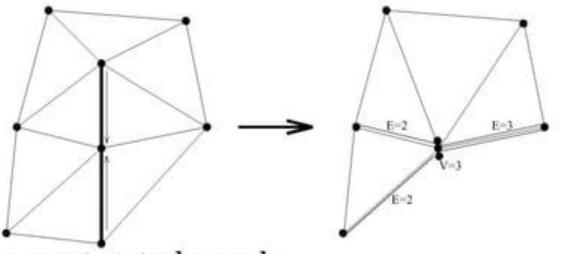
- · Intersected edges resolved by ghost vertices
- Generates communication between original and ghost vertex
  - Handled using MPI and/or OpenMP
  - Portable, Distributed and Shared Memory Architectures
  - Local reordering within partition for cache-locality

## Partitioning

- Graph partitioning must minimize number of cut edges to minimize communication
- Standard graph based partitioners: Metis, Chaco, Jostle
  - Require only weighted graph description of grid
    - · Edges, vertices and weights taken as unity
  - Ideal for edge data-structure
- Line Solver Inherently sequential
  - Partition around line using weigted graphs

## Partitioning

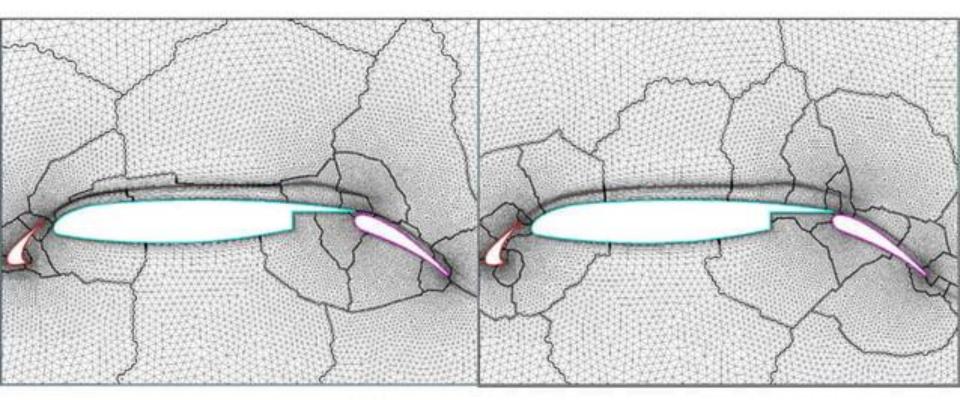
- Contract graph along implicit lines
- · Weight edges and vertices



- Partition contracted graph
- Decontract graph
  - Guaranteed lines never broken
  - Possible small increase in imbalance/cut edges

### Partitioning Example

• 32-way partition of 30,562 point 2D grid



- Unweighted partition: 2.6% edges cut, 2.7% lines cut
- Weigted partition: 3.2% edges cut, 0% lines cut