

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASB304 – COMPUTATIONAL FLUID DYNAMICS FOR AEROSPACE APPLICATIONS III YEAR VI SEM UNIT-II FINITE ELEMENT TECHNIQUES TOPIC: Stability properties of explicit and implicit methods

NAME: Mr.N.Venkatesh., M.Tech Assistant Professor Aerospace Engineering SNS College of Technology

Explicit Method

$$
\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \left[\frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} \right]
$$

- \triangleright Explicit method uses the fact that we know the dependent variable, u at all x at time t from initial conditions
- Since the equation contains only one unknown, u_i^{n+1} (i.e. u at time $t+\Delta t$), it can be obtained directly from known values of u at t
- The solution takes the form of a "marching" procedure in steps of time

Crank – Nicolson Implicit Method

- \triangleright The unknown value u at time level (n+1) is expressed both in terms of known quantities at n and unknown quantities at $(n+1)$.
- The spatial differences on RHS are expressed in terms of averages between time level n and (n+1) :

$$
\frac{u_i^{n+1} - u_i^n}{\Delta t} = \frac{\alpha}{2} \left[\frac{u_{i+1}^{n+1} + u_{i+1}^n - 2u_i^{n+1} - 2u_i^n + u_{i-1}^{n+1} + u_{i-1}^n}{\Delta x^2} \right]
$$

- The above equation cannot result in a solution of u_i^{n+1} at grid point i.
- \triangleright The eq. is written at all grid points resulting in a system of algebraic equations which can be solved simultaneously for u at all i at time level $(n+1)$.

Crank – Nicolson Implicit Method

 \triangleright The equation can be rearranged as

$$
-u_{i-1}^{n+1} + \frac{2+2r}{r}u_i^{n+1} - u_{i+1}^{n+1} = u_{i-1}^n + \frac{2-2r}{r}u_i^n + u_{i+1}^n
$$

where $r = \alpha \Delta t/(\Delta x)^2$

On application of eq. at all grid points from $i=1$ to $i=k+1$, the Þ. system of eqs. with boundary conditions $u=A$ at $x=0$ and $u=D$ at $x=L$ can be expressed in the form of $Ax = C$

$$
\begin{bmatrix} B(1) & -1 & 0 & 0 & \dots & 0 \\ -1 & B(2) & -1 & 0 & \dots & 0 \\ 0 & -1 & B(3) & -1 & \dots & 0 \\ \vdots & & & & & 0 \\ 0 & 0 & 0 & \dots & -1 & B(k-1) \end{bmatrix} \begin{bmatrix} u_2^{n+1} \\ u_3^{n+1} \\ u_4^{n+1} \\ \vdots \\ u_k^{n+1} \end{bmatrix} = \begin{bmatrix} (C(1)+A)^n \\ C(2)^n \\ C(3)^n \\ \vdots \\ (C(k-1)+D)^n \end{bmatrix}
$$

A is the tridiagonal coefficient matrix and x is the solution vector. The eq. can be solved using Thomas Algorithm

Explicit ~ Implicit – A Comparison

▶ Explicit Method

- Easy to set up.
- > Constraint on mesh width, time-step.
- Less computer time.

▶ Implicit Method

- Complicated to set up.
- Larger computer time.
- No constraint on time step. Þ.
- ▶ Can be solved using Thomas Algorithm.

 \triangleright A finite difference representation of a PDE is said to be consistent if:

 $\lim_{mesh\to 0} (PDE - FDE) = \lim_{mesh\to 0} (TE) = 0$

- For equations where truncation error is $O(\Delta x)$ or $O(\Delta t)$ or higher orders, TE vanishes as the mesh is refined
- \triangleright However, for schemes where TE is $\mathcal{O}(\Delta t/\Delta x)$, the scheme is not consistent unless mesh is refined in a manner such that $\Delta t/\Delta x \rightarrow 0$
- \triangleright For the Dufort-Frankel differencing scheme (1953), if $\Delta t/\Delta x$ does not tend to zero, a parabolic PDE may end up as a hyperbolic equation

Convergence

 \triangleright A solution of the algebraic equations that approximate a PDE is convergent if the approximate solution approaches the exact solution of the PDE for each value of the independent variable as the grid spacing tends to zero:

$$
u_i^n = \bar{u}(x_i, t_n) \text{ as } \Delta x, \Delta t \to 0
$$

RHS is the solution of algebraic equation

Errors & Stability Analysis

 \triangleright Errors :

- \triangleright A = Analytical solution of PDE
- \triangleright D = Exact solution of finite difference equation
- \triangleright N = Numerical solution from a real computer with finite accuracy
- \triangleright Discretization Error = A -D = Truncation error + error introduced due to the treatment of boundary condition

► Round-off Error =
$$
\varepsilon
$$
 = N –D
N = ε + D

ε will be referred to as "error" henceforth

Errors & Stability Analysis

- Consider the I-D unsteady state heat conduction equation and its FDE : Þ. $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$ \longrightarrow $\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \left[\frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} \right]$
- \triangleright N must satisfy the finite difference equation : $\frac{D_i^{n+1} + \varepsilon_i^{n+1} - D_i^n - \varepsilon_i^n}{\Delta t} = \alpha \left[\frac{D_{i+1}^n + \varepsilon_{i+1}^n - 2D_i^n - 2\varepsilon_i^n + D_{i-1}^n + \varepsilon_{i-1}^n}{\Delta x^2} \right]$
- Also, D being the exact solution also satisfies FDE : r $\frac{D_i^{n+1} - D_i^n}{\Delta t} = \alpha \left[\frac{D_{i+1}^n - 2D_i^n + D_{i-1}^n}{\Delta x^2} \right]$
- Subtracting above 2 equations, we see that error ϵ also satisfies FDE : Þ. $\frac{\varepsilon_i^{n+1} - \varepsilon_i^n}{\Delta t} = \alpha \left[\frac{\varepsilon_{i+1}^n - 2\varepsilon_i^n + \varepsilon_{i-1}^n}{\Delta x^2} \right]$
- If errors ε 's shrink or remain same from step n to $n+1$, solution is stable. F. Condition for stability is:

$$
\left|\frac{\varepsilon_i^{n+1}}{\varepsilon_i^n}\right| \le 1
$$

Application in Fluid Flow Equations

Introduction

- ▶ Fluid mechanics: More complex, governing PDE's form a
- nonlinear system.

Burger's Equation: $\frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} = v \frac{\partial^2 \zeta}{\partial x^2}$ => Includes time dependent, convective and diffusive term.
- \triangleright Here 'u': velocity, 'y': coefficient of viscosity, & ' ζ ': any property which can be transported or diffused.
- \triangleright Neglecting viscous term, remaining equation is a simple analog of Euler's equation : $\frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} = 0$

Conservative Property

- \triangleright FDE possesses conservative property if it preserves integral conservation relations of the continuum
- Consider Vorticity Transport Equation: $\frac{\partial \omega}{\partial t} = -(V, \nabla) \omega + v \nabla^2 \omega$ Þ.

where ∇ is nabla, V is fluid velocity and ω is vorticity.

Integrating over a fixed region we get,

$$
\int_{\Re} \frac{\partial \omega}{\partial t} d\Re = -\int_{\Re} (V \cdot \nabla) \omega d\Re + \int_{\Re} \nu \nabla^2 \omega d\Re
$$

which can be written as :

$$
\frac{\partial}{\partial t}\int_{\Re}\omega\,d\Re=-\int_{A_o}\left(V\omega\right)\cdot n\,dA+\nu\int_{A_o}\left(\nabla\,\omega\right)\cdot n\,dA
$$

i.e. rate of accumulation of ω in \mathcal{R} is equal to net advective flux rate plus net diffusive flux rate of ω across A_o into \Re

The concept of conservative property is to maintain this integral relation in finite difference representation.

Conservative Property

- ▶ Consider inviscid Burger's equation :
- $rac{\partial \omega}{\partial t} = -\frac{\partial}{\partial x}(u\omega)$ FDE Analog $\frac{\omega_i^{n+1} \omega_i^n}{\Delta t} = -\frac{u_{i+1}^n \omega_{i+1}^n u_{i-1}^n \omega_{i-1}^n}{2\Delta x}$
- Evaluating the integral $\frac{1}{\Delta t} \sum_{i=l_1}^{l_2} \omega \Delta x$ over a region running from $i=1$
to $i=1$:
 $\frac{1}{\Delta t} \left[\sum_{i=l_1}^{l_2} \omega_i^{n+1} \Delta x \sum_{i=l_1}^{l_2} \omega_i^n \Delta x \right] = (u\omega)_{l_1-\frac{1}{2}} (u\omega)_{l_2+\frac{1}{2}}$

Thus, the FDE analogous to inviscid part of the

integral has preserved the conservative property.

 $\partial \omega$

integral has preserved the conservative property.
For non-conservative form of inviscid Burger's equation: $\frac{\partial \omega}{\partial t} = -u$

$$
\frac{1}{\Delta t} \left[\sum_{i=I_1}^{I_2} \omega_i^{n+1} \Delta x - \sum_{i=I_1}^{I_2} \omega_i^n \Delta x \right] = \frac{1}{2} \sum_{i=I_1}^{I_2} \left[u_i^n \omega_{i-1}^n - u_i^n \omega_{i+1}^n \right]
$$

i.e. FDE analog has failed to preserve the conservative property

Transportive Property

- FDE formulation of a flow is said to possess the transportive property if Þ. the effect of perturbation is convected only in the direction of velocity
- Consider model Burger's equation in conservative form and a perturbation Þ. $\epsilon_m = \delta$ in ζ for u>0, all other $\varepsilon = 0$
- Using FTCS, we find the transportive property to be violated Þ.
- On the contrary when an upwind scheme is used,

$$
\frac{\zeta_i^{n+1} - \zeta_i^n}{\Delta t} = -\frac{u\zeta_i^n - u\zeta_{i-1}^n}{\Delta x}
$$
\n
$$
\frac{\zeta_{m+1}^{n+1} - \zeta_{m+1}^n}{\Delta t} = +\frac{u\delta}{\Delta x} \qquad \Rightarrow \text{ Downstream Location (m+1)}
$$
\n
$$
\frac{\zeta_{m+1}^{n+1} - \zeta_{m+1}^n}{\Delta t} = -\frac{u\delta}{\Delta x} \qquad \Rightarrow \text{ Point m of disturbance}
$$
\n
$$
\frac{\zeta_{m+1}^{n+1} - \zeta_{m+1}^n}{\Delta t} = 0 \qquad \Rightarrow \text{ Upstream Location (m-1)}
$$

Upwind method maintains unidirectional flow of information.

The Upwind Method

▶ The inviscid Burger's equation in the following forms are unconditionally unstable :

$$
\frac{\zeta_i^{n+1} - \zeta_i^n}{\Delta t} + u \frac{\zeta_{i+1}^n - \zeta_i^n}{\Delta x} = 0
$$

$$
\frac{\zeta_i^{n+1} - \zeta_i^n}{\Delta t} + u \frac{\zeta_{i+1}^n - \zeta_{i-1}^n}{2 \Delta x} = 0
$$

The equations can be made stable by using backward space difference scheme if $u > 0$ and forward space difference scheme if $u < 0$:

$$
\frac{\zeta_i^{n+1} - \zeta_i^n}{\Delta t} = -\frac{u\,\zeta_i^n - u\,\zeta_{i-1}^n}{\Delta x} + \text{viscous term, for } u > 0
$$
\n
$$
\frac{\zeta_i^{n+1} - \zeta_i^n}{\Delta t} = -\frac{u\,\zeta_{i+1}^n - u\,\zeta_i^n}{\Delta x} + \text{viscous term, for } u < 0
$$

 \triangleright Upwind method of discretization is necessary in convection dominated flows.

THANKYOU