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Explicit Method

uftt —ult uly, — 2ul +up
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» Explicit method uses the fact that we know the
dependent variable, u at all x at time t from initial
conditions

» Since the equation contains only one unknown,u!"*(i.e. u
at time t+At), it can be obtained directly from known
values of u at t

» The solution takes the form of a “marching” procedure in
steps of time



Crank — Nicolson Implicit Method
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The unknown value u at time level (n+1) is expressed
both in terms of known quantities at n and unknown
quantities at (n+1).

The spatial differences on RHS are expressed in terms of
averages between time level n and (n+1) :

uftt —ul afuly ul, - 2uptt = 2ug +uty +ul,

At 2 Ax?

The above equation cannot result in a solution of «"**at
grid point i.
The eq. is written at all grid points resulting in a system of

algebraic equations which can be solved simultaneously
for u at all i at time level (n+1).



Crank — Nicolson Implicit Method

» The equation can be rearranged as

2+ 2r 2 —=2r
-+ v THARES THARE S THINE -
where r = aAv/(Ax) 2
»  On application of eq. at all grid points from i=1 to i=k+| , the
system of egs. with boundary conditions u=A at x=0 and u=D

at x=L can be expressed in the form of Ax = C
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» Ais the tridiagonal coefficient matrix and x is the solution
vector.The eq. can be solved using Thomas Algorithm
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Explicit ~ Implicit — A Comparison

» Explicit Method
» Easy to set up.
» Constraint on mesh width, time-step.
» Less computer time.

» Implicit Method
» Complicated to set up.
» Larger computer time.
» No constraint on time step.
» Can be solved using Thomas Algorithm.



Consistency

» A finite difference representation of a PDE is said to be

consistent if:
lim (PDE—FDE)= lim (TE)=0

mesh—0 mesh—0

» For equations where truncation error is O(Ax) or O(At)
or higher orders, TE vanishes as the mesh is refined

» However, for schemes where TE is O(At/Ax), the scheme

is not consistent unless mesh is refined in a manner such
that At/Ax—0

» For the Dufort-Frankel differencing scheme (1953), if
At/Ax does not tend to zero, a parabolic PDE may end up
as a hyperbolic equation



Convergence

» A solution of the algebraic equations that approximate a
PDE is convergent if the approximate solution approaches
the exact solution of the PDE for each value of the

independent variable as the grid spacing tends to zero :
u' = i(x;,t,) as Ax,At - 0

RHS is the solution of algebraic equation



Errors & Stability Analysis

» Errors:
» A = Analytical solution of PDE
» D = Exact solution of finite difference equation

» N = Numerical solution from a real computer with finite
accuracy

» Discretization Error = A —D = Truncation error + error
introduced due to the treatment of boundary condition

» Round-off Error = €= N =D
N=g+D
£ will be referred to as “error’ henceforth




-

-

w

v

w

Errors & Stability Analysis

Consider the |-D unsteady state heat conduction equation and its FDE :
du 9%u ult — " [u;‘,,_1 - 2u; + u?_I]
=a

—_—= (== : t
ot  ox? At Ax?
N must satisfy the finite difference equation :
D+ e —Dp — g7 i1t &1 — 2D — 267 + D4 + 57,4
At Ax?
Also, D being the exact solution also satisfies FDE :
D:ﬁi - Daﬂ 2 D:"ix - 201" + D:"-x
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Subtracting above 2 equations, we see that error € also satisfies FDE :

n+l1 n n n n
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If errors €s shrink or remain same from step n to n+1, solution is stable.

Condition for stability is : ot




Application in Fluid Flow Equations



Introduction
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Fluid mechanics: More complex, governing PDE’s form a

nonlinear m.
onlinear syste 8¢ 8¢ 82¢

Burger’s Equation: 3; T¥5°= V35 => Includes time
dependent, convective and diffusive term.

Here ‘u’: velocity,‘y": coefficient of viscosity, & ‘C’: any
property which can be transported or diffused.

Neglecting viscous term, remaining equation is a simple

' ion * 0 d
analog of Euler’s equation : 9 + u_f — 0

dat dx



Conservative Property

»

FDE possesses conservative property if it preserves integral

conservation relations of the continuum

Consider Vorticity Transport Equation: dw = —(V.V)w + W0

at

where V is nabla,V is fluid velocity and w is vorticity.
Integrating over a fixed region we get,
C Ow T B
— R / (V- V)wdRh +
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which can be written as :
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i.e. rate of accumulation of W in R is equal to net advective flux rate plus
net diffusive flux rate of w across A, into R

The concept of conservative property is to maintain this integral
relation in finite difference representation.



Conservative Property

> Consider inviscid Burger’s equation :
dw (uw) FDE Analo w; ' —wf _ Uity Wiy — Uiy W74
at A At 24Ax

. . !
y Evaluatmg the integral izz

to i=l, : B4 Elgmhy
[Z wl T Ax — w, Ax] = (uw) 11— (uw)

whx over a region running from i=l,

Thus, the FDE analogous to inviscid part of the
integral has preserved the conservative property. dw dw

= —uU—

» For non-conservative form of inviscid Burger's equation: o dx

I;
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i.e. FDE analog has failed to preserve the conservative property



Transportive Property

» FDE formulation of a flow is said to possess the transportive property if
the effect of perturbation is convected only in the direction of velocity

» Consider model Burger's equation in conservative form and a perturbation
€, = 0in { for u>0,all other £=0

v Using FTCS, we find the transportive property to be violated
»  On the contrary when an upwind scheme is used,
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» Upwind method maintains unidirectional flow of information.



The Upwind Method

» The inviscid Burger’s equation in the following forms are
unconditionally unstable :
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» The equations can be made stable by using backward space
difference scheme if u > 0 and forward space difference
scheme ifu<0:
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» Upwind method of discretization is necessary in convection
dominated flows.

+ viscous term. foru >0

+ VISCOUS ter. for u <\
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