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Computational Fluid Dynamics (CFD)

» Computational Fluid Dynamics (CFD) is the
analysis of fluid flows using numerical solution
methods.

» Simply put, CFD is the calculation of properties of
a flowing fluid.

» Fluid dynamics is involved with physical laws in
the form of partial differential equations.

» CFD calculations require simultaneous solution of
many sets of differential equations




Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) is the
approximation of a continuously-varying quantity
in terms of values at a finite nhumber of points is

called discretisation.

The following are common to any CFD simulation

(1) The flow field is discretised i.e. field variables
(p, u, v, w, p, ...) are approximated by their
values at a finite number of node
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Computational Fluid Dynamics (CFD)

(2) The equations of motion are discretised:
derivatives — algebraic approximations
(continuous) (discrete)

df~A[__ fz‘fl
dx Ax x,— x,
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(3) The resulting system of algebraic equations
-' |ved to give values at the nodes.



Computational Fluid Dynamics (CFD)

» Fluid-Flow Equations

» The equations of fluid flow are based on
fundamental physical conservation principles:
e mass: change of mass = 0

e momentum: change of momentum = force X
time

e energy: change of energy = work + heat In
fluid flow

These conservation principles may be expressed
mathematically as either: e integral (control-
volume) equations; e differential equations.
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Computational Fluid Dynamics (CFD)

» Integral (Control-Volume) Approach

This describes how the total amount of a physical
quantity (mass, momentum, energy, ...) changes
within a finite region of space (control volume).
over an interval of time:

» CHANGE = (AMOUNT ENTERING - AMOUNT
LEAVING) + AMOUNT CREATED

.



Computational Fluid Dynamics (CFD)

In fluid mechanics this is usually expressed in rate
form by dividing by the time interval (and
transferring net transfer through the boundary to
the LHS):

( TIME DERIVATIVE of amount in V) + ( NET

FLUX through boundary of V ) = ( SOURCE inside
V)

.



Computational Fluid Dynamics (CFD)

The flux (rate of transport through a surface) is
further subdivided into:

advectionl - movement with the flow;

diffusion — net transport by random molecular or
turbulent motion

( TIME DERIVATIVE of amount in V £+ (
ADVECTION+DIFFUSION through boundary of V)
= ( SOURCE inside V)

This is a canonical equation, independent of
whether the physical quantity is mass,
momentum, chemical content, etc




Differential Equations

» In regions without shocks, interfaces or other
discontinuities, fluid-flow equations can also be
written in differential forms (Section 2). These
describe what is going on at a point rather than
over a whole control volume. Mathematically,
they can be derived by making the control
volumes infinitesimally small. There are many
ways of writing these differential equations.
Finite-difference methods approximate some
differential form of the governing equations




Scalar

» A scalar is any physical property which can be
represented by a single real number in some
chosen unit system.

» e.qg. pressure (P), temperature (T) and density

(P).

» Scalars are denoted by single letters in

italics, e.g. P , T, p
» The standard scalar operations must be
performed using consistent units of
measurement; in particular, addition, subtraction
and equality are only physically meaningful for
scalars of the same dimensional units.
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Vector

» A vector is an entity which is represented by both
magnitude and direction. In its most general form
an n-dimensional vector a can be denoted
by n scalar components (a,,a,,...a,) corresponding
to coordinate axes (Xy,X5...X,) .

» Generally we deal with 3 dimensional space, the
vector a=(a,,a,,a;) relates to a general set of
axes Xy,X,, X3; representing X,y,z in a rectangular
Cartesian systemorr, 8,zand r, 6,¢ in cylindrical
and spherical polar coordinates.

» The index notation presents the same vector

as ai (i=1,2,3..n) in which corresponds to each of
the coordinate axes.




The scalar product of two vectors

The scalar product of two

vectors a(a,,a,,a;) and b(b,,b,,b3) is defined as
a.b=a;b;+a,b,+as;b;=a;b,

a.b=b.a

a.(b+c)=a.b+a.c

The geometrical representation of the scalar
product is a.b=abcosb as depicted by the shaded
area in figure next

.
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The scalar product of two vectors




The vector product of two vectors

The vector product of a

vector a=(a,,a,,a;) with b=(b4,b,,b3) is defined as
a*b=(a,bs-asb,,azb;-a;bs,a,b,- a,b,)=eya;b,

where the permutation symbol

e;=0 when any two indices are equal

e;= +1 when i,jk are an even permutation of 1,2,3
e;= -1 when i j,k are an odd permutation of 1,2,3
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The vector product of two vectors

» where the even permutations are 123, 231 and
312 and the odd permutations are 132, 213 and
321

» The following behaviour is observed:
a*a=0
a*b=-b*a
a*(b+c)=a*b+a*c

e



The vector product of two vectors
l:l‘ 0, absin®)

\ 4
The geometrical representation of the vector product can be
illustrated by defining a and b to lie in the x,X, plane of a

rectangular coordinate system ox;x,X5,a=(a,0,0) and b=(bcos
8,bsin 6,0)

The vector product is then a*b=(0,0,absin 6) to follow the
direction of z axis

fore, the vector product represents a normal vector of
tut=aglial to the area of a parallelogram described by



Second Rank Tensors

» A vector is itself a first rank tensor and a scalar is
a tensor of rank zero.

» A second rank tensor is defined here as a linear
vector function.

» The tensor acts as a linear vector function as

follows: u;=T;V,

B



Second Rank Tensors

An -n dimensional second rank
tensor, T or T;; has components n? which can be expressed
in a array corresponding to axes X,,X,...,X,, as

(T Tig o DN \

T Tz ... Ton

IT=Ty= : SR :
\Thi B <o D]

the 3-dimensional tensor with 9 components will be
used to present tensor algebra in array notation:

Tw Ty Tis
T=Ti=| Tan Tz T

Ty Tz Tas




The single dot product

» Equation ui=Tijvj can be written in tensor
notation as a single dot product operation pairing
one geometric vector to another (expanding the
vector in a column for convenience)

Ty + Tiavg + Thgvs
u=Tev="Tv; =| Tav + Txnv: + Txnvs
Tavy + Tsve + T




The scalar product of two tensors

» The scalar product of two tensors is denoted
by T:S which can be evaluated as the sum of
the nine products of the tensor components

TS =TS = TuSn +Ti252 + TaSi3+
T21521 + T22522 + T2sSun +
T3 531 + T'32532 + T33S%
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The tensor product of two vectors

» The tensor product of two vectors, denoted
by ab (sometimes denoted a*b), is defined by
the requirement that (ab).v=a(b.v) for all and
produces a tensor whose components are

evaluated as:

athy aiby aby
ab =aib; = | abp a2k azb3

agby azby asgbs
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» The derivation of the principal equations of
fluid dynamics is based on the fact that the
dynamical behaviour of a fluid is determined
by the following conservation laws,

namely: 1. the conservation of mass
2. the conservation of momentum
3. the conservation of energy

» CFD: Attempts to solve the basic (differential)
conservation equations.




» The goal of CFD is to replace these
differential equations with algebraic
approximations, which can be
computationally solved using numerical
methods, a grid is formed over the domain of
interest to calculate variables of discrete

points. Variables are both functions of time
and space.

» Goal of cfd is to solve a very large set of
algebraic equations written for each discrete
position verses time within the flow.




Explicit method and implicit method

» The explicit method and implicit method are numerical
analysis methods used to solve a time-dependent
differential equation.

The explicit method calculates the system status at a future
time from the currently known system status. The implicit
method calculates the system status at a future time from
the system statuses at present and future times.

» For example, when there is a differential equation y=f(y,t) ,
the explicit method expresses it as y,,,.,=y,+hf(y,.t,)

» That is, if you know the state at n, you can calculate the
state at n+1.




Explicit method and implicit method

» The implicit method

» On the contrary, the implicit method has the state at n+1
on the right-hand side as in y,.=y,+hf(y.t,+1) -

» The explicit method is easier to program and can be
calculated within a shorter time.But its stability is so low that
you need to use a step size small enough to prevent
divergence.

» On the contrary, the implicit method has high stability and
converges if you set proper parameters. But, as you need to
solve an equation at every step, it takes a long time to
calculate.




Explicit method and implicit method

» Mathematically, if Y(t) is the current system state
and Y(t+At) is the state at the later time (At is a
small time step), then, for an explicit method

Y(t+At) = F(Y(t))

» while for an implicit method one solves an
equation G(Y(t) , Y(t+At) )=0 to find Y(t+At)

.



Explicit method and implicit method

» A Physical Example

» An elementary physical problem involving the propagation of
a pressure wave can be used to illustrate the differences
between implicit and explicit methods. Imagine an increase
in pressure is applied to one end of an organ pipe that is
closed at the opposite end. We know that a pressure wave
will move down the pipe and be reflected at the closed end.
Given enough time, pressure waves will travel back and forth
in the pipe many times before the pressure distribution
settles down to the constant value applied at the open end.




Explicit method and implicit method

» If only steady-state results are wanted, then an
implicit solution scheme with lots of damping of
the pressure waves should be used so that
steady conditions will be reached as quickly as
possible. In this case the damping incorporated
in the implicit iteration method (i.e., the under-
relaxation) is highly desirable.

» If, instead, the transient pressure waves are to
be investigated, then we want the least amount
of numerical damping so that many wave
reflections can be accurately followed. This
situation is best treated with an explicit solution
method.




Explicit method and implicit method

» Explicit methods require a time-step size that limits the
advance of the pressure step to less than one
computational cell per time step. However, this restriction is
related to accuracy because most difference equations
involve quantities from neighboring cells only. A pressure
wave that propagates further than one cell in one time step
would then be moving into regions that have no defined
influence on the pressure. Not only is this physically
unrealistic, it also leads to numerical instability.




Explicit method and implicit method

» Implicit methods, on the other hand, couple all
the cells together through an iterative solution
that allows pressure signals to be transmitted
through a grid. The price for this communication
between distantly located cells is a damping or
smoothing of the pressure waves introduced by
the under-relaxation needed to solve the coupled
equations.

» The choice of whether an implicit versus explicit
method should be used ultimately depends on
the goal of the computation. When time accuracy
is important, explicit methods produce greater
accuracy with less computational effort than
implicit methods.




Explicit method and implicit method

» example of initial value problem in ODE
y(t)=f(t,y) y(t0)=y0

The forward Euler's method is one such numerical method
and is explicit.

Let tk, k=0,1,2,..., be a sequnce in time with

tk+1=tk+ At

Let yk and Yk be the exact and the approximate solution at
t = tk , respectively

then

Yk+1=Yk + f(tk,Yk) At
e size or A decreases then the error between the
aproximation is reduced



Explicit method and implicit method

» The backward Euler's method is an implicit one
which contrary to explicit methods finds the
solution by solving an equation involving the
current state of the system and the later one.
More precisely

» Yk+1=Yk + f(tk,Yk+1) At

» This disadvantage to using this method is the
time it takes to solve this equation. However,
advantages to this method include that they are

sually more numerically stable for solving a stiff
Iarger step size A can be used

\\\\\
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we will use forward and the backward Euler's method to approximate the solution to this

y+2y=2—-e"%, y(0)=1,

problem and these approximations to the exact solution

In both methods we let At = 0.1 and the final time ¢, = 0.5.

0<t<05,

y(t) =1405%e % -05+e7%.

Table 1a. Forward and Backward Euler's Method Compared To Exact Solution

b
(time)
0
0.1
0.2
0.3
04
0.5

Yn. forward
Euler's
approximation
1
09
0.853
0.8374
0.8398
0.8517

Y., backward
Euler's
approximation
1
0.9441
0.916
0.9049
0.9039
0.9086

Yn. €xacl
1
0.925795
0.889504
0.876191
0.876191
0.883728

|e,| error

forward
0
0.025795
0.036504
0.03791
0.036391
0.032028

le| error
backward
0
0.018305
0.026496
0.028709
0.027709
0.024872



