-~

SNS COLLEGE OF TECHNOLOGY G

Coimbatore-35
An Autonomous Institution

—_—

LLTTITITIONS

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

19ECB211 - MICROCONTROLLER PROGRAMMING & INTERFACING

I1 YEAR IV SEM

UNIT I - PIC MICROCONTROLLER : HISTORY , FEATURES & ARCHITECTURE

TOPIC 7 - PIC Data Formats and Directives



PIC Microcontroller Data Type

»The PIC microcontroller has only one data type. It is 8 bits,
and the size of each register is also 8 bits.

»The programmer break down data larger than 8 bits, 00 to
FFH, or 0 to 255 in decimal to be processed by the CPU.

»The data types used by the PIC can be positive or negative.



Data Format Representation

» There are 4 ways to represent a byte of data in the PIC assembler.

» The numbers can be in hex, binary, decimal or ASCII formats.

Hex Numbers:

There are 4 ways to show hex numbers:

®Can use 'h' or 'H' right after the number like this: MOVLW 88H or
MOVLW 88h

"Put 0x or 0X in front of the number like this: MOVLW 0x88 or
MOVLW 0X88

"Put nothing in front or back of the number like this: MOVLW 88

=Put 'h' in front of the number, but with this single quotes around the
number like this: MOVLW h'88’

LLTTITITION S



—

~»

..

Data Format Representation

rIrorions

Some PIC assemblers might give you a warning, but no error, when you use
88H because the assembler already knows that data is in hex and there is no
need to remind it.

This is a good reminder when we do coding in assembly.

Below lines of code use the hex format:

MOVLW 25 WREG = 25H

ADDLW 0x11 WREG = 25H + 11H = 36H
ADDLW 12H WREG = 36H + 12H = 46H
ADDLW H2A" WREG = 48H + 2AH = 72H
ADDLW 2CH WREG = 72H + 2CH = SEH




Data Format Representation

The following are invalid:

MOVLW E5H invahd, it must be MOVLW OESH

ADDLW Cb invalid, it must be ADDLW 0CB

It the value starts with the hex digits A - F, then it must be preceded with a zero. The valid 15 given
below.

MOVLW OF wvahd, WREG = OFH or 00001111 in binary

FIrorionss



Data Format Representation - Binary Number

FIrorionss

There I1s only on way to represent binary numbers in a PIC assembler. It 1s as follows.

MOVLW B10011001 WREG = 10011001 or 99 in Hex

The lowercase b will also work. " is the single quote key. which i1s on the same key as the double quotes
" This 1s different from other assemblers such as the 2051 and xo6.

MOVLW BE'00100101 WREG = 25H

ADDLW B'00010001 WREG = 25H + 11H = 36H



Data Format Representation - Decimal Number

There are 2 ways to represent decimal numbers in a PIC assembler, One way i1s as follows.

MOVLW D12 WREG = 00001100 or OC in Hex

The lowercase d will work also. This i1s different from other assemblers such as the 8051 and x86, In
those assemblers, to indicate decimal numbers we simply use the decimal e.g, 12 and nothing before or
after it, while in the PIC assembler, 12 i1s the default for hex numbers.

MOVLW D31 WREG = 25H | 37 in Decimal and 25 in Hex
ADDLW D1 rFr WREG =37 + 17 = 54, 54 in Decimal and 36H in Hex

The other way to represent decimal numbers Is to use " value”

MOVLW .12 WREG = 00001100 =0CH =12

rIrorions



Data Format Representation — ASCII Representation

rIrorions

Use the letter A to represent the ASCII data in PIC assembler.

MOVLWA'Y WREG = 00110010 or 32 in Hex

Lowercase 'a' can also use. This 1s different from other assemblers such as the 5051 and x36. In those
assemblers, single quotes are used for single ASCI characters and double quotes are used for a string.

MOVLWA'Y ‘WREG = 39H, which 15 hex number for ASCII 'Y

ADDLW A™ WREG = 39H + 31H =70H

‘31 Hex is for ASCII 17

MOVLW 'Y WREG = 39H, another way for ASCI|

To define ASCII strings, more then one character, we use th DB, define byte directive.



Assembler Directives EQU-Equate

LLTTITITION S

» Directives, also called pseudo-instructions give directions to
the assembler.

»The MOVLW and ADDLW instructions are commands to the
CPU, but EQU, ORG and END are directives to the assembler.

» The widely used directives of the PIC are EQU and SET.



Assembler Directives EQU-Equate

LLTTTTITION S

» This is used to define a constant value or a fixed address.

»The EQU directive does not set aside storage for a data item,
but associates a constant number with a data or an address
label so that when the label appears in the program, its

constant will be substituted for the label



—

~»

..

Assembler Directives EQU-Equate

FIrorionss

»The following uses EQU for the counter constant, and then

the constant is used to load the WREG register:

i®

COUNT EQU 0x25 total count as counter number

MOVLW COUNT WREG = 25H

When executing the above instruction "MOVLW COUNT", the register WREG will be loaded with the
value 25H.



Advantage of using Equate.

LLTTITITION S

»Assuming that a constant, a fixed value, is used through out the
program, and the programmer wants to change its value everywhere.
» By the use of EQU, the programmer can change it once and the
assembler will change all of its occurrences throughout the program,
SET:-

» This directive is used to define a constant value or a fixed address.
»In this regard, the SET and EQU directives are identical.

» The only difference is the value assigned by the SET directive may
be reassigned later.



Using EQU for Special Function Register Address
Assignment

EQL 1s widely used to assign special function register (SRF) addresses.

COUNTER EQU 000 ‘counter value 00

PORT BEQU O0xFF6 apecial function register Port B address
MOVLW COUNTER WREG = 00H

MOVWF PORTB ‘Port B now has 00 too

INCF PORTB, F Port B has 01

INCF PORTE, F ncrement Port B, Port B = 02
INCF PORTBE, F ncrement Poer B, Port B = 03

FIrorions



Using EQU for RAM Address Assignment

FIrorions

The common usage of EQU 15 for the address assignment of the general purpose region of the file
register. Examine the following rewrite of an earlier example using EQU:

-assign RAM location to MYREG
MOVLW 0 clear WREG, WREG =0
MOVWF MYREG clear MYREG, location 12H has 0
MOVILW 22H WREG = 22H

ADDWF MYREG, F MYREG = WREG + MYREG
ADDWF MYREG, F MYREG = WREG + MYREG
ADDWF MYREG, F MYREG = WREG + MYREG
ADDWF MYREG, F MYREG = WREG + MYREG




References

https://www.embedded.com/the-evolution-of-embedded-devices-addressing-complex-design-challenges/

http://lamtechnical.com/org-origin-end-list-include-config-radix-directives

https://www.electronicspecifier.com/products/design-automation/embedded-systems-the-evolution-of-embedded-
system-design

Mazidi M. A., McKinlay R. D., Causey D. “PIC Microcontroller And Embedded Systems” Pearson Education

International, 2008(Unit L1111, IV & V)



https://www.embedded.com/the-evolution-of-embedded-devices-addressing-complex-design-challenges/
http://iamtechnical.com/org-origin-end-list-include-config-radix-directives
https://www.electronicspecifier.com/products/design-automation/embedded-systems-the-evolution-of-embedded-system-design

