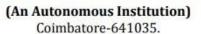


(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM


Gauss Divirgence theorem:

The furface integral of normal component of vector function F over a closed swiface & enclosing Volume V is equal to the volume integral of divergence of F taking through cut the volume V

i.e $\iint \vec{F} \cdot \hat{n} \, ds = \iiint \vec{\nabla} \cdot \vec{F} \, dv$

Verify the gauss divergence theorem ($\forall T D T$) for $\vec{F} = H X \vec{T} - y^2 \vec{J} + y \vec{X} \vec{K}$ out the tube bounded by x = 0, x = 1 y = 0, y = 1, x = 0, x = 1Scanned with Eamscanner

UNIT-1 VECTOR CALCULUS GAUSS DIVERGENCE THEOREM SF. A de = SSS V. Folv F = HYII - Y'J' + YIR $\overline{\nabla} \cdot \overline{F} = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{i} \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z$ $= \frac{\partial}{\partial x} (H \times T) + \frac{\partial}{\partial y} (-y^2) + \frac{\partial}{\partial T} (yT)$ = HT - 2y + y = HT - y. $\nabla \cdot \vec{F} = HT - y.$ RHI IST v. Folv = JSS(HZ-y) dudydz. $= \iint_{x=0}^{\infty} (\mu \tau - y) dy dz$ = $\iint_{x=0}^{\infty} (\mu \tau - y) dy dz.$ $= \int_{Q} (HTy - y_{12}^{2}) \int_{y=0}^{1} dt.$ = $\int (HT - 1/2) dt.$ $= \left[\frac{4t^2}{2} - \frac{1}{8} \right]_{a=0}^{a=0}$ $= \frac{4}{2} - \frac{1}{2}.$ $\iint \nabla \cdot \vec{F} \, dv = \frac{3}{2} - \frac{1}{2}.$ A

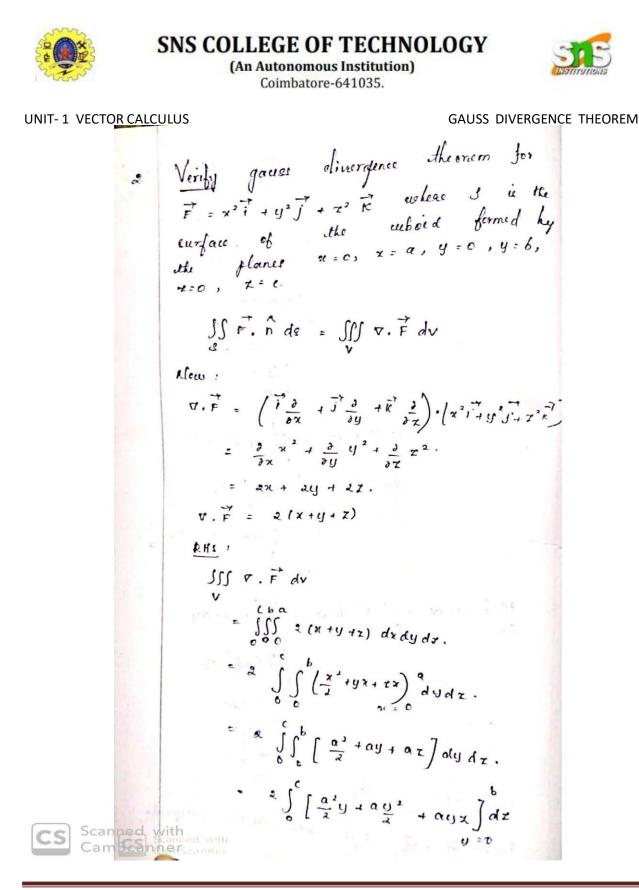
23MAT102- DIFFERENTIAL EQUATIONS AND TRANSFORMS K.PALANIVEL/AP/MATHS Page 2 of 7

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

S S S						
Scannec CamSca						
Car with	1			and the second second		
th Camper tau.	^ n	-> ^ F.n	ds	_lqn_	F. non	JSF. n ds
AECID	, I	HNI	dydz	21 = 1	HZ	S, SHI aydz.
Sa OBFC.	-i	- 422 -	dy dx.	H = 0	0	· · ·
S3 EBFG1	Ĵ.	- y'	ax dz.	y = 1	-1	SSED dadz
SH DADC	- <u>j</u>	+ y ^s	dzorz	4:0	D	j o
So DGFC	k 7	Ух	dr dy	X = 1	У	SS y dray
S6 OAFB		- y z	dxdy	× = 0	0	0
tertes.						-


(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$F = \iint_{S_{1}} F \cdot \hat{n} ds = \iint_{S_{1}} F \cdot \hat{n} ds = \iint_{S_{2}} F \cdot \hat{n} ds = \iint_{S_{1}} Hz dy dz + \iint_{S_{1}} F \cdot \hat{n} ds = \iint_{S_{1}} Hz dy dz + 0 \cdot \\ = \iint_{S_{1}} F \cdot \hat{n} dz + \iint_{S_{1}} F \cdot \hat{n} ds = \iint_{S_{1}} Hz dy dz + 0 \cdot \\ = \iint_{A_{2}} Hz dz + \\ = H(\frac{z^{2}}{z})_{0}^{1} \cdot \\ = H_{A_{2}} \cdot \\ = \frac{z^{2}}{z} \cdot \\ = \int_{S_{1}} dz + \int_{S_{1}} F \cdot \hat{n} ds = -\iint_{S_{1}} dz dz + 0 \cdot \\ = \int_{S_{1}} [zJ]' dz \cdot \\ = -\int_{S_{1}} dz + \int_{S_{2}} F \cdot \hat{n} ds - \int_{S_{1}} [zJ]' dz \cdot \\ = -\int_{S_{1}} dz - (z)_{0}^{1} \cdot \\ = -1 \quad$$

$$\iint_{S_{5}} F \cdot \hat{n} ds + \iint_{S_{5}} F \cdot \hat{n} ds - \int_{S_{1}} \int_{S_{1}} y dz dy \cdot \\ = -\int_{S_{1}} dy \cdot \\ = \int_{S_{1}} y dy \cdot \\ = \int_{S_{1}} \int_{S_{1}} \int_{S_{1}} dy \cdot \\ = \int_{S_{1}} \int_{S_{1}} dy \cdot \\ = \int_{S_{1}} \int_{S_{1}} \int_{S_{1$$

(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS					GAUSS DIVERGENCE THEOREM		
	~ [- 2 - 3	$\begin{bmatrix} a^{2}b \\ b \end{bmatrix} = z$ $\begin{bmatrix} a^{2}b \\ a \end{bmatrix} = z$ $\begin{bmatrix} a^{2}b \\ c \end{bmatrix} = z$	$\frac{ab^{2}}{ab^{2}} + \frac{ab^{2}}{ab^{2}} + b + c]$	abc	$a b \frac{\tau}{2}^{2} \end{bmatrix} $	$\begin{array}{c} c \\ c \\ c \\ c \\ d \\ c \\ c \\ c \\ c \\ c \\$	
Face	1	F. D		on s		JSF. n ds	
	-+	- 2 2	x - 0	0	dude	(b)ja'dydz. 0 (a	
EBF61 DADC	エ	y² -y²	4=6 4=0	ь. 0	dx dz dx dz	ca S b ² dudz o b ^a	
DOYFC	ĸ	z 2	Z = @	e ²	d x dy	D ux dd	
OAFB	- 7 -	- I)	2=0	0	dx dy.	ð	
Scanned with	ut k	15 + 55 F 32	÷ 0		$\int_{0}^{b} a^{2} dy dy$ $y) \int_{0}^{b} dz$ $b dz \cdot$ $b(z) \int_{0}^{b} \int_{0}^{b} dz$	olz +0	

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

Ca

GAUSS DIVERGENCE THEOREM

$$= \sigma^{2}bc$$

$$\iint \vec{F} \cdot \vec{n} \, ds + \iint \vec{f} \cdot \vec{n} \, dr = \iint \vec{b} \cdot \vec{b} \, dz \, dz + o.$$

$$= b^{2} \int m \, dt$$

$$= b^{2} a \int dz.$$

$$= b^{2} a \int dy.$$

$$= c^{2} \int a \, dy.$$

$$= c^{2} a \int dy.$$

$$= b^{2} \int dy.$$

$$=$$