

(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

Gauss Divergence theorem:

The furface integral of normal component of vector function F over a closed swiface & enclosing Volume V is equal to the volume integral of divergence of F taking through ett the volume V

i.e SF. n ds = SSV. F dv

Verify the gauss divergence theorem (UTDT) for $\vec{F} = H \times \vec{I} \cdot \vec{J} - y^2 \vec{J} + y \times \vec{K}$ ouver the cube bounded by $\tilde{x} = 0, x = 1$, y = 0, y = 1, x = 0, x = 1

UNIT-1 VECTOR CALCULUS GAUSS DIVERGENCE THEOREM JF. A de - JJS R. Folv F = HYII - Y'J' + YIR $\overline{\nabla} \cdot \overline{F} = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{i} \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} - \frac{\partial}{\partial z} \right) + \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z$ $= \frac{\partial}{\partial x} (H \times T) + \frac{\partial}{\partial y} (-y^2) + \frac{\partial}{\partial T} (yT)$ = HT - 2y + y = HT - y. $\nabla \cdot \vec{F} = HT - y$. RHI. IST v. Folv = JSS(HZ-y) dudydz. $= \iint_{x=0}^{\infty} (\mu \tau - y) dy dz$ = $\iint_{x=0}^{\infty} (\mu \tau - y) dy dz.$ $= \int_{Q} (HTy - y_{12}^{2}) \int_{y=0}^{1} dt.$ = $\int (HT - 1/2) dt.$ $= \left[\frac{4t^2}{2} - \frac{1}{8} \right]_{a=0}^{a=0}$ $= \frac{4}{2} - \frac{1}{2}.$ $\iint \overline{v} \cdot \overline{F} \, dv = \frac{3}{2} - \frac{7}{2}.$

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

S						
Scanned						
Asir Camp	^ n	F.C	ds	10.	F. non	Jf F. n ds
AECID	-n i	4712	dydr.	_lqn 21 = 1	ЦZ	S, ISHIAUdz.
Sa OBFC.	-i	- 4 2 2 .	dy dx.	¥ = 0	0	- 0
S3 EBFG1	Ĵ.	- y'	dx dx.	y = 1	-1	SSED dada
SH DADC	- <u>j</u>	+ 4 2	drolz	4:0	D	l o
SE DOFC	F'	УZ	da dy	X = 1	У	SS y dady
SE OAFB		- yz	dxdy	× = 0	0	0
11-1-1-	4	1				
furt.		1		12		-

(An Autonomous Institution) Coimbatore-641035.

GAUSS DIVERGENCE THEOREM

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS					GAUSS DIVERGENCE THEOREM			
	~ [- 2 - 3	$\int \frac{a^{2}b}{2} z$	$\frac{ab^{2}}{ab^{2}} + \frac{ab^{2}}{ab^{2}} + b + c]$	t + abc 2	$ab\frac{\pi}{2}$	Chiri de Laur de Ele san Flores de Control Bay		
Face	'n	F. P	lan	F.S DD S	ds	JSF. n ds		
OBFC.	テ	$-\chi^2$	x = 0 4 = 6	0 6*	dy dz dx dz	IS b ² dudz		
DA DC DOIFC	ĸ		7 = A	e ²	dx dx dx dy dx dy	SJ (2dxdy		
CAEB	-K	- 2 ^{,2}	1.12	с /	6			
CS Scanned with	with	15 -+ 55F 32	- C		$\int_{0}^{b} a^{2} dy$ $y)_{0}^{b} dz$ $b dz$ $b dz$			

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$= \alpha^{2}bc$$

$$\iint_{z_{3}} \vec{F} \cdot \hat{n} \, ds + \iint_{z_{3}} \vec{F} \cdot \hat{n} \, dr = \iint_{z_{3}} \vec{b} \, dr \, dr$$

$$= \int_{z_{3}} \int_{z_{3}} dr \, dr$$

$$= \int_{z_{3}} \int_{z_{3}} \int_{z_{3}} dr \, dr$$

$$= \int_{z_{3}} \int_{z_{3}} \int_{z_{3}} dr \, dr$$

$$= \int_{z_{3}} \int_{z_{3}} \int_{z_{3}} \int_{z_{3}} dr \, dr$$

$$= \int_{z_{3}} \int$$