

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

Gauss Divirgence theorem:

The furface integral of normal component of vector function F over a closed swiface S enclosing Volume V is equal to the volume integral of divergence of F taking through cut the volume V

i.e $\text{IF}^7 \cdot \hat{n} ds = \text{ISTV.} \vec{F} dv$

Verify the gauss divergence theorm (UTDT) for $\vec{F} = HNT\vec{7} - y^2\vec{j} + yZ\vec{k}$ ours the subse bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

$$\int_{3}^{7} \vec{r} \cdot \vec{n} \, d\vec{k} = \int_{3}^{7} \vec{v} \cdot \vec{r} \, d\vec{v}$$

$$\vec{F} = HYT\vec{I} = y' \vec{J} + y \vec{k}$$

$$\vec{V} \cdot \vec{F} = \begin{pmatrix} \vec{i} \frac{\partial}{\partial x} + \vec{j} & \frac{\partial}{\partial y} & 1 \vec{k} & \frac{\partial}{\partial z} \end{pmatrix} + \begin{pmatrix} n \sin z \vec{i} - y^{2} \vec{j} + y \tau \vec{k} \end{pmatrix}$$

$$= \frac{2}{7x} (nx\tau) + \frac{\partial}{\partial y} (-y^{2}) + \frac{\partial}{\partial z} (y\tau)$$

$$= nx - 2y + y - nx - y$$

$$\vec{V} \cdot \vec{F} = Hx - y$$

$$\vec{V} \cdot \vec{F} = Hx - y$$

$$\vec{V} \cdot \vec{F} = nx - y$$

$$\vec{V} \cdot \vec{F} = nx$$

$$\vec{$$

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

CS						
Scannec						
ned						
Ash Jau.	^	→ ^	ds	-lan	F. non	ss F. A ds
AECID	→	ниг	dydz	N = 1	ЦZ	ड
Sa OBFC.	-i	- 4 x z ·	dy dz.	H = 0	0	. 0
S3 EBFGI	j.	- y '	dx dx.	y = 1	-1	SSED dadz
SH DADC	-J	+ 43	dxolz	4.0	D	10
SE DOFC	r'	yz	ola dy	X = 1	9	SS y dady
S6 OAFB	- K	- y z	dudy	x = 0	0	0
to Fe		2				

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

Verily jaues divergence theorem for

Verily jaues divergence theorem for

$$\overrightarrow{F} = x^{2}\overrightarrow{1} + y^{2}\overrightarrow{j} + z^{2} \overrightarrow{K}$$
 where \overrightarrow{S} is the

enrich of the subsoid formed by

the planes $x = c$, $x = \alpha$, $y = c$, $y = b$,

the planes $x = c$, $x = \alpha$, $y = c$, $y = b$,

the planes $x = c$, $x = \alpha$, $y = c$, $y = b$,

the planes $x = c$, $x = \alpha$, $y = c$, $y = b$,

the planes $x = c$, $x = \alpha$, $y = c$, $y = b$,

the $x = c$, $x = c$,

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$\begin{array}{lll}
 & 2 & \int \left[\frac{a^2b}{2} + \frac{ab^2}{2} + abz \right] dz \\
 & = a \left[\frac{a^2b}{2} + \frac{ab^2}{2} + ab\frac{z^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + ab\frac{z^2}{2} \right] \\
 & = 2 \frac{ab^2}{2} \left[a + b + c \right] \\
 & = 3 \frac{ab^2}{2} \left[a + b + c \right] \\
 & = 3 \frac{ab^2}{2} \left[a + b + c \right] \\
 & = 3 \frac{ab^2}{2} \left[a + b + c \right]
\end{array}$$

Face	'n	F. A	ean	F.S on s	ds	JSF. A de
AEGID	77	x 2	n = a	a ¹	dydz.	Sa'dydz.
OBFC.	子	-x2	x = 0	0	dydz	0
EBFGI	Jr	1 y 2	4 = 6	P .	dx dz	S b2 dadz
	-5	-y2	4:0	0	dxdx	0
DA DC	-T	12	T = 0	e 2	dady	Pa yxdy
DAEB	-K	- 2)	2:0	0	dxdy.	0
	1		1 1			

$$\int_{S_1} \vec{f} \cdot \hat{n} \, ds + \iint_{S_2} \vec{f} \cdot \hat{n} \, ds = \iint_{S_2} a' dy \, dz + 0$$

$$= o' \int_{S_2} b \, dz$$
with

canned with with

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

