

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GREEN'S THEOREM

Green's Theorem:

If M, N, $\frac{\partial M}{\partial y}$, $\frac{\partial N}{\partial x}$ are confinuous and one-valued functions and elegion R enclosed by the curve c, then $\int_{C} \left[Mdx + Ndy \right] = \iint_{R} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dx dy$

problems:

I. Evaluate $\int (x^2 + xy) dx + (x^2 + y^2) dy$, where is the c square bounded by the lines x=0, x=1, y=0and y=1. coln.

Green's Theorem: $\int [Mdx + Ndy] = \iint \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dx dy$ C $HOME M. = 9cy + x^2 | N = x^2 + y^2$ $\frac{\partial M}{\partial y} = x$ $\frac{\partial N}{\partial y} = 2x$

Now, $\int [Mdx + Ndy] = \int [2x - x] dx dy$ = $\int \int x dx dy = \int [\frac{x^2}{2}] dy$ = [[= 0] dy = & [4]

S[(x2+xy)dx+(x2+y2)dy] = 1

Scanned with CamScanner

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GREEN'S THEOREM

a). Verify Green's theorem for $\int (xy+y^2) dx + x^2 dy$ where C is the closed curve bounded by $y=x^2$ and y=x. Soln.

By areen's theorem,

Coren $y=x^2$; y=x

$$\Rightarrow x^{2} = x$$

when
$$x=0$$
, $y=0 \Rightarrow (0,0)$
 $x=1$, $y=1 \Rightarrow (1,1)$

Here
$$M = xy + y^2$$
 $N = x^2$ $\frac{\partial M}{\partial y} = x + 2x$ $\frac{\partial N}{\partial x} = 2x$

RHS
$$\iint_{R} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dx dy = \iint_{R} \left[\frac{\partial X}{\partial x} - (x + 2y) \right] dx dy$$

$$= \iint_{R} \left[\frac{\partial X}{\partial x} - \frac{\partial Y}{\partial y} \right] dx dy$$

$$= \iint_{R} \left[\frac{x^{2}}{2} - 2xy \right] dy$$

$$= \iint_{R} \left[\frac{y}{2} - 2y^{3/2} + \frac{3}{2}y^{2} \right] dy$$

$$= \iint_{R} \left[\frac{y}{2} - 2y^{3/2} + \frac{3}{2}y^{2} \right] dy$$

(An Autonomous Institution) Coimbatore-641035.

VECTOR CALCULUS UNIT-1

GREEN'S THEOREM

$$= \int \frac{y^{8}}{4} - 8 \frac{y^{5/2}}{5/2} + \frac{3}{2} \frac{y^{3}}{3} \int_{0}^{1}$$

$$= \left(\frac{1}{4} - \frac{4}{5} + \frac{1}{2}\right) - 0$$

$$= \frac{5 - 16 + 10}{20}$$

To evaluate S[Mdx+Ndy], we shall take c gn the different c paths.

Along with AO IY=x > dy = dx]

Along with AD
$$Ig = x - y$$

$$\int [M dx + N dy] = \int [(xy + y^2) dx + x^2 dy]$$

$$= \int [(xy + y^2) dx + x^2 dx]$$

$$= \int [x^2 + x^2 + x^2] dx$$

$$= \int \left[x^2 + x^2 + x^2 \right] dx$$

$$=3\int_{3}^{3}x^{2}dx$$

$$=3\left[\frac{x^{3}}{3}\right]$$

$$= 3 \left[\frac{23}{3} \right]$$

$$=-1$$

Along with OA [y= x2 => dy= 2xdx]

Along with
$$\int \left[(xy + y^2) dx + x^2 dy \right] = \int \left[(x(x^2) + x^4) dx + x^2 dy \right] = \int \left[(x(x^2) + x^4) dx + x^4 dy \right]$$

(An Autonomous Institution) Coimbatore-641035.

VECTOR CALCULUS UNIT-1

GREEN'S THEOREM

$$= \int_{0}^{1} \left[x^{3} + x^{4} + 2x^{3} \right] dx$$

$$= \left[\frac{x^{4}}{4} + \frac{x^{5}}{5} + \frac{x^{4}}{4} \right]_{0}^{1}$$

$$= \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{2} \right) - 0$$

$$= \frac{5 + 4 + 10}{20}$$

$$= \frac{19}{20}$$

$$\int_{C} (Mdx + Ndy) = \int_{Q} + \int_{Q} = \frac{19}{20} - 1$$

$$= \frac{19 - 20}{20}$$

$$= \frac{19 - 20}{20}$$

$$\int_{C} (Mdx + Ndy) = \frac{-1}{20}$$

:. LHS = RHS Hence green's theorem is voritfed.

3]. vorthy green's theorem for (x2-y2) dx+2xy dy where Cs the closed curve bounded by $y=x^{a}$ and $y^{a}=x$ Soln.

Green
$$y=x^2$$
 and $y^2=x$

$$\Rightarrow y=(y^2)^2$$

$$y^4-y=0$$

$$y(y^3-1)=0$$

$$y=0, y^3-1=0$$
nned with $y^3=1 \Rightarrow y=1$

Scanned with

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GREEN'S THEOREM

Scanned with CamScanner

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GREEN'S THEOREM

The evaluate
$$\int [M dx + N dy]$$
, we shall take c

for the different paths.

i) Along on $[y = x^2]$

ii) Along on $[y^2 = x]$

Along on $[y = x^2]$

$$= \int [(x^2 - y^2) dx + axy dy]$$

$$= \int [(x^2 - x^4) dx + ax(e^2) (ax dx)]$$

$$= \int [x^2 - x^4 + ax^4] dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int x^4 - x^4 + ax^4 = \int x^4 dx$$

$$= \int [x^3 - x^4] dx = \int x^4 dx$$

$$= \int x^4 - x^4 + ax^4 = \int x^4 dx$$

$$= \int [x^4 - x^4] dx$$

$$= \int [x^4 - x^4$$

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GREEN'S THEOREM

Now,

$$\int (x^{3}-y^{2}) dx + 2xy dy = \int + \int OA AO$$

$$= \underbrace{\frac{14}{15}} - \underbrace{\frac{1}{3}}$$

$$= \underbrace{\frac{14-5}{15}}$$

$$= \underbrace{\frac{9}{15}}$$

$$= \underbrace{\frac{3}{5}}$$

$$\therefore LHS = RHS$$
Hence Vorlighed.