

(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

Gauss Divergence theorem:

The furface integral of normal component of vector function F over a closed swiface & enclosing Volume V is equal to the volume integral of divergence of F taking through cut the volume V

i.e SF. n ds = SSV. F dv

Verify the gauss divergence theorem (UTDT) for $\vec{F} = H \times \vec{I} - y^2 \vec{J} + y \times \vec{K}$ ouver the cube bounded by $\varkappa = 0, \chi = 1$, $y = 0, y = 1, \chi = 0, \chi = 1$ Scanned with campscanner

23MAT103-DIFFERENTIAL EQUATIONS AND TRANSFORMS Mrs.SATHYA S/AP/MATHS Page 1 of 7

CS

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$\iint_{A} \vec{r} \cdot \vec{n} \quad d\vec{e} \quad f \quad y \quad \vec{r} \quad \vec{r} \quad d\vec{v}$$

$$\vec{r} = h \vec{r} \cdot \vec{r} \quad (\vec{r} \cdot \vec{y} \cdot \vec{r} \cdot \vec{r} \cdot \vec{y} \cdot \vec{r} \cdot \vec{r} \cdot \vec{y} \cdot \vec{r} \cdot \vec{$$

23MAT103-DIFFERENTIAL EQUATIONS AND TRANSFORMS Mrs.SATHYA S/AP/MATHS Page 2 of 7

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

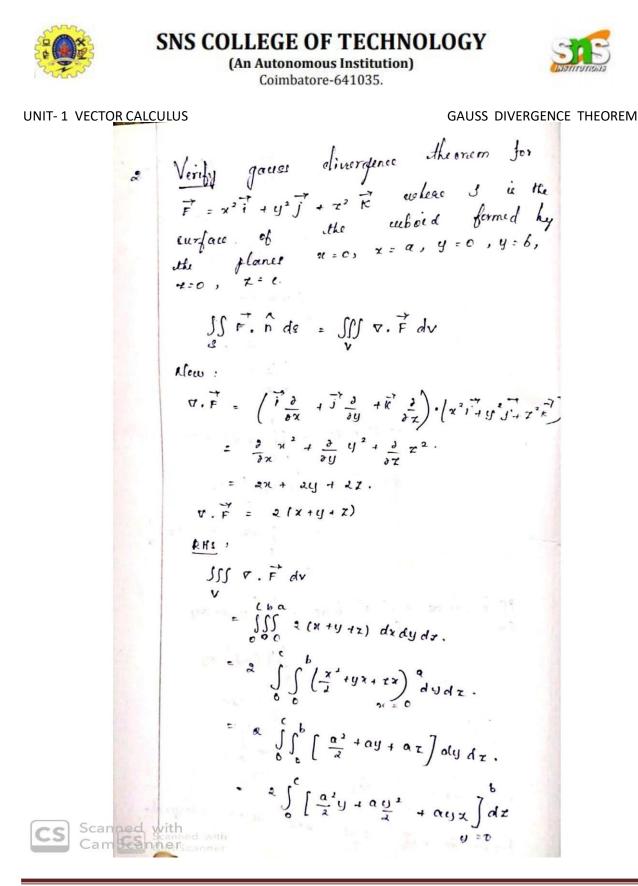
S S S						
Scannec CamSca						
Car with	1			and the second second		
th Camper tau.	^ n	-> ^ F.n	ds	_lqn_	F. non	JSF. n ds
AECID	, I	HNI	dydz	21 = 1	HZ	S, SHI aydz.
Sa OBFC.	-i	- 422 -	dy dx.	H = 0	0	· · ·
S3 EBFG1	Ĵ.	- y'	ax dz.	y = 1	-1	SSED dadz
SH DADC	- <u>j</u>	+ y ^s	dzorz	4:0	D	j o
So DGFC	k 7	Ух	dr dy	X = 1	У	SS y dray
S6 OAFB		- y z	dxdy	× = 0	0	0
tertes.						-

(An Autonomous Institution) Coimbatore-641035.

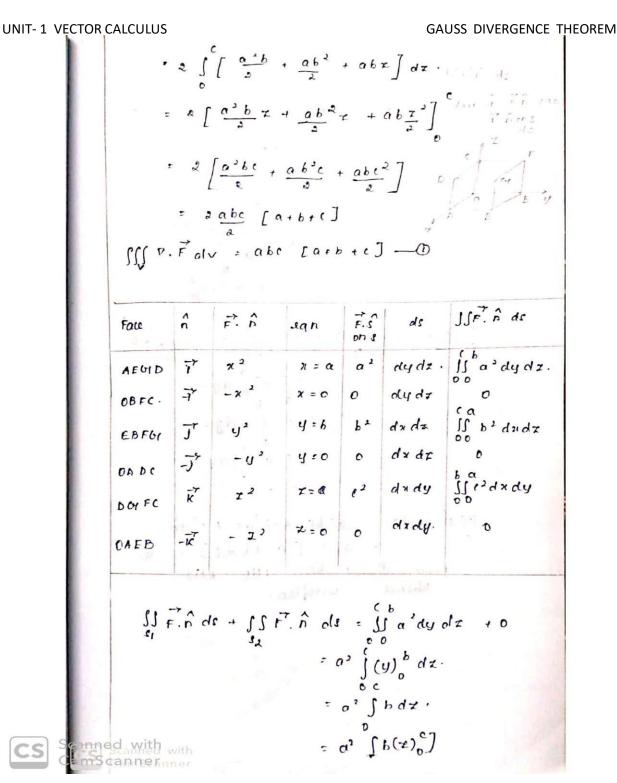
UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

23MAT103-DIFFERENTIAL EQUATIONS AND TRANSFORMS Mrs.SATHYA S/AP/MATHS Page 4 of 7



(An Autonomous Institution) Coimbatore-641035.



(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$= \sigma^{2}bc$$

$$\iint \vec{F} \cdot \hat{n} \, ds + \iint \vec{F} \cdot \hat{n} \, dr = \iint b^{2} b^{2} \, dr \, dr + 0.$$

$$= b^{2} \int a \, dr$$

$$= b^{2} a \int dr.$$

$$= b^{2} a \int dr.$$

$$= b^{2} a (r)^{2}$$

$$= c^{2} \int a \, dy.$$

$$= c^{2} \int a \, dy.$$

$$= c^{2} a \int dy.$$

$$= c^{2} a b.$$

$$\iint \vec{F} \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f \vec{F} \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$

$$\int f r \cdot \hat{n} \, ds = \sigma^{2} bc + b^{2} ac + c^{2} a b.$$