

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

Gauss Divirgence theorem:

The furface integral of normal component of vector function F over a closed swiface S enclosing Volume V is equal to the volume integral of divergence of F taking through cut the volume V i.e $\text{IF}^7 \cdot \hat{n} \, ds = \text{ISTV.} \vec{F} \, dv$

Very the games divergence theorm (UTDT) for $\vec{F} = HXT\vec{1} - y^2\vec{j} + yZ\vec{k}$ out the tube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

$$\int_{\mathcal{F}} \vec{F} \cdot \vec{h} \, dC = \int_{\mathcal{F}} \vec{V} \cdot \vec{F} \, dV$$

$$\vec{F} = h \times T \vec{i} - y' \vec{j} + y \times T \vec{k} \frac{\partial}{\partial y} + h \times T \vec{i} - y' \vec{j} + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y' \vec{j} + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial y} + h \times T \vec{i} - y' \vec{j} + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial y} + h \times T \vec{i} - y' \vec{j} + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y' \vec{j} + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - 2y + y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - 2y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - 2y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - 2y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - 2y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - 2y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y + y \times T \vec{k}$$

$$\vec{F} = h \times T \vec{i} - y + y + y + y \times T \vec{k}$$

(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

CS						
Scannec						
ned v						
vith	^	-> 1 F.0	ds	-lan	F. n on	SF. Ads
AECID	ì	ниг	dydz	24 = 1	μα	
Sa OBFC.	→ -i	- H x Z ·	dy dr.	H = 0	0	. 0
S3 EBFGI	j .	- y '	drdz.	y = 1	-1	SSEID dadz
SH DADC	-J	+43	dxolz	9.0	0	10
SE DUFC.	\vec{k}'	yz	olz dy	X = 1	У	Ssy dady
S6 OAFB	- K	- y z	dudy	X = 0	0	0
feet Fa.	4					

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

Virily jauss diverdince theorem for

$$\overrightarrow{F} = x^2 \overrightarrow{i} + y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$$
 where \overrightarrow{J} is the subsoid formed by the subsoid formed by the planes $x = c$, $x = a$, $y = c$, $y = b$, the planes $x = c$, $x = a$, $y = c$, $y = b$, the planes $x = c$, $x = a$, $y = c$, $y = b$, the planes $x = c$, $x = a$, $y = c$, $y = b$, the planes $x = c$, $x = a$, $y = c$, $y = b$, the $x = c$ is $x = c$.

Also $x = c$ is $x =$

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$\begin{array}{lll}
 & 2 & \int \left[\frac{a^2b}{2} + \frac{ab^2}{2} + abz \right] dz \\
 & = a \left[\frac{a^2b}{2} + \frac{ab^2}{2} + abz^2 \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + abz^2 \right] \\
 & = 2 \frac{ab^2}{2} \left[a + b + c \right]$$

$$& = 2 \frac{ab^2}{2} \left[a + b + c \right] \\
 & = 3 \frac{ab^2}{2} \left[a + b + c \right] \\
 & = 3 \frac{ab^2}{2} \left[a + b + c \right]$$

Face	'n	F. 6	san	F.S on s	ds	JSF. A de
AEGID	77	x 2	η = α	a 2	dydz.	Sadydz.
OBFC.	子	-x 2	x = c	0	dy dz	O
EBF61	Jr	i y 2	4:4	P,	dx dz	S b2 dudz
DA DC	-)	- y ?	4:0	0	dxdr	
DOI FC	-T	7 2	7 = A	e 2	dady	Miggarda
OAFB	-K	- 2,	Z=0	0	drdy.	0
	1		1 4			

$$\iint_{\mathcal{E}_{1}} \overrightarrow{F} \cdot \widehat{\mathbf{n}} \, d\mathbf{r} + \iint_{\mathcal{E}_{2}} \overrightarrow{F} \cdot \widehat{\mathbf{n}} \, d\mathbf{s} = \iint_{\mathcal{E}_{2}} \alpha' \, d\mathbf{y} \, d\mathbf{z} + \mathbf{0}$$

$$= \alpha^{2} \iint_{\mathcal{E}_{2}} (\mathbf{y})^{b} \, d\mathbf{z}.$$

$$= \alpha^{2} \iint_{\mathcal{E}_{2}} b \, d\mathbf{z}.$$
with with

Scanned with with Campanar

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS GAUSS DIVERGENCE THEOREM from Scanned with Scanned with Cams Canner