

SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+'
Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION

MICROPROCESSORS AND MICROCONTROLLERS ENGINEERING

II YEAR/ IV SEMESTER

UNIT II - I/O Interfacing

TOPIC - Memory and I/O Interfacing

8086 Microprocessor

Memory Processor Memory

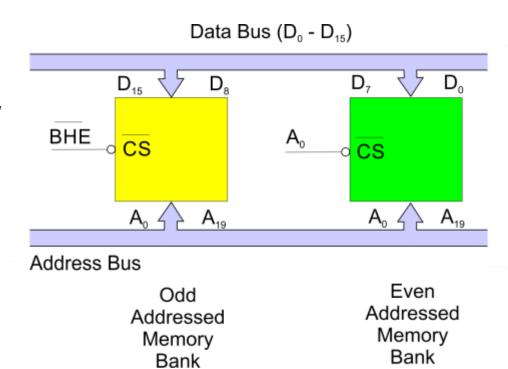
- Registers inside a microcomputer
- Store data and results temporarily
- No speed disparity
- Cost ↑

Primary or Main Memory

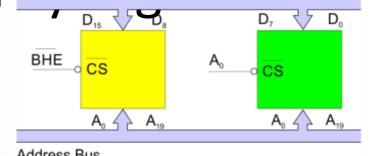
- Storage area which can be directly accessed by microprocessor
- Store programs and data prior to execution
- Should not have speed disparity with processor ⇒ Semi Conductor memories using CMOS technology
- ROM, EPROM, Static RAM, DRAM

Secondary Memory

- Storage media comprising of slow devices such as magnetic tapes and disks
- Hold large data files and programs: Operating system, compilers, databases, permanent programs etc.


Memory

Store Programs and Data


Memory organization in 8086

- Memory IC's : Byte oriented
- **8086 : 16-bit**
- Word : Stored by two consecutive memory locations; for LSB and MSB
- Address of word : Address of LSB
- **Bank 0**: $A_0 = 0 \implies \text{Even addressed}$ memory bank

Bank 1 : \overline{BHE} = 0 \Rightarrow Odd addressed memory bank

Address Bus

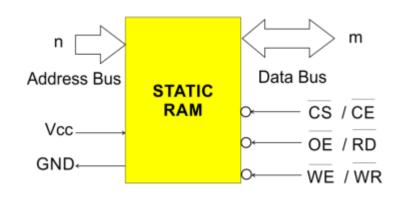
Odd Addressed Memory Bank

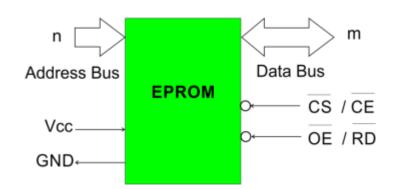
Even Addressed Memory Bank

	Operation	BHE	A ₀	Data Lines Used
1	Read/ Write byte at an even address	1	0	$D_7 - D_0$
2	Read/ Write byte at an odd address	0	1	$D_{15} - D_8$
3	Read/ Write word at an even address	0	0	$D_{15} - D_0$
4	Read/ Write word at an odd address	0	1	$D_{15} - D_0$ in first operation byte from odd bank is transferred
		1	0	D ₇ – D ₀ in first operation byte from odd bank is transferred

Memory organization in 8086

- Available memory space = EPROM + RAM
- Allot equal address space in odd and even bank for both EPROM and RAM
- Can be implemented in two IC's (one for even and other for odd) or in multiple IC's

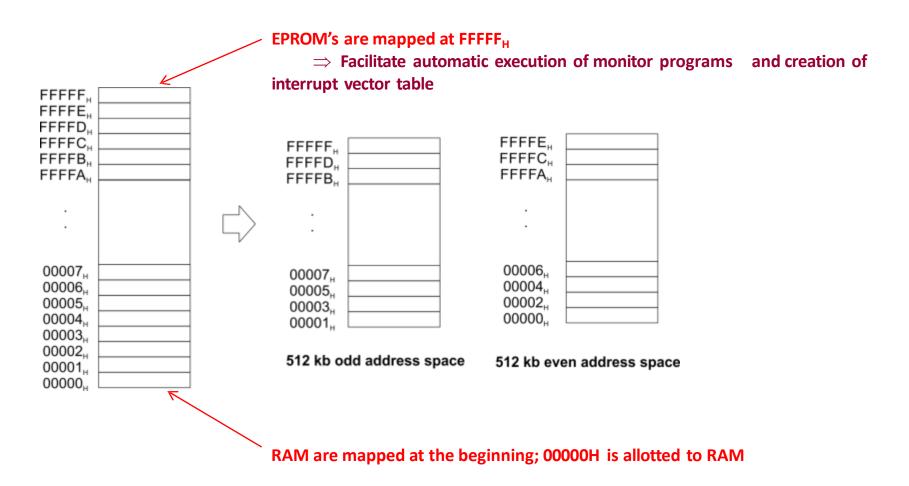

Interfacing SRAM and EPROM


- Memory interface ⇒ Read from and write in to a set of semiconductor memory IC chip
- EPROM ⇒ Read operations
- RAM ⇒ Read and Write

In order to perform read/ write operations,

- Memory access time < read / write time of the processor</p>
- Chip Select (CS) signal has to be generated
- Control signals for read / write operations
- Allot address for each memory location

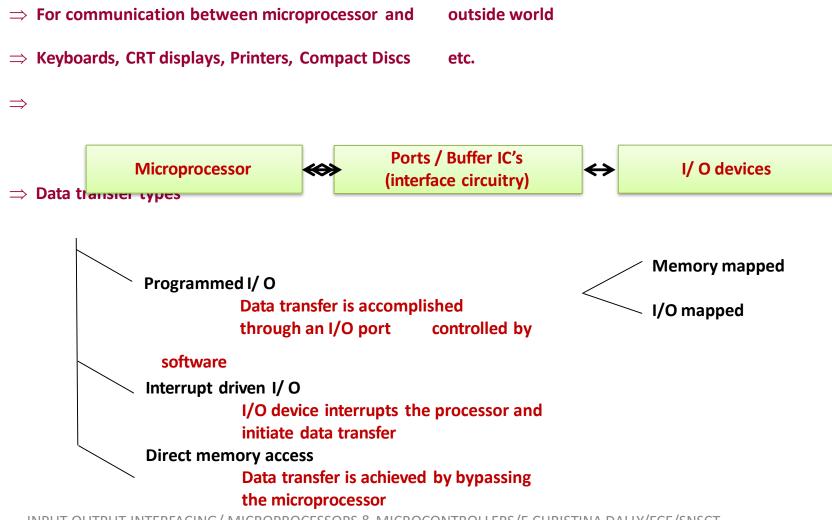
Interfacing SRAM and EPROM Typical Semiconductor IC Chip



No of Address pins	ı	Range of address in hexa		
	In Decimal	In kilo	In hexa	
20	2 ²⁰ = 10,48,576	1024 k = 1M	100000	00000 to FFFFF

Interfacing SRAM and EPROM

■ Memory map of 8086


Interfacing SRAM and EPROM

Monitor Programs

- ⇒ Programing 8279 for keyboard scanning and display refreshing
- ⇒ Programming peripheral IC's 8259, 8257, 8255, 8251, 8254 etc
- ⇒ Initialization of stack
- ⇒ Display a message on display (output)
- ⇒ Initializing interrupt vector table

Note:	8279	Programmable keyboard/ display controller
	8257	DMA controller
	8259	Programmable interrupt controller
	8255	Programmable peripheral interface

Interfacing I/O and peripheral devices

8086 and 8085 comparison

Memory mapping	I/O mapping
20 bit address are provided for I/O devices	8-bit or 16-bit addresses are provided for I/O devices
The I/O ports or peripherals can be treated like memory locations and so all instructions related to memory can be used for data transmission between I/O device and processor	Only IN and OUT instructions can be used for data transfer between I/O device and processor
Data can be moved from any register to ports and vice versa	Data transfer takes place only between accumulator and ports
When memory mapping is used for I/O devices, full memory address space cannot be used for addressing memory.	Full memory space can be used for addressing memory.
⇒ Useful only for small systems where memory requirement is less	⇒ Suitable for systems which require large memory capacity
For accessing the memory mapped devices, the processor executes memory read or write cycle.	For accessing the I/O mapped devices, the processor executes I/O read or write cycle.
⇒ M / IO is asserted high	⇒ M / IO is asserted low

THANK YOU