

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Glauss Seidel method :

(5)

Solve by Grauss Seider method:

$$x + y + 54z = 110$$

$$27x + 6y - 5z = 85$$

$$6x + 15y + 2z = 72$$
.

Let us rearrange the equations,

$$6x + 15y + 2z = 72 \rightarrow 2$$

$$x + y + 54z = 110. \rightarrow 3$$

$$x + y + 54z = 110. \rightarrow 3$$

Let 4 = Z = 0

Iteration No	x = 85 - 69 + 52 27	$y = \frac{72 - 6x - 2z}{15}$	$Z = \frac{110 - \chi - y}{54}$
	3.148	3.541	1.913
2	2.432	3.572	1.926
3	2.426	3.573	1.926
4	2. 425	3.573	1.926
5	2.425	3.573	1.926

Hence the soln is x = 2.425, y=3.573, Z=1.926

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

$$Z = \frac{1}{10} (24 - 0.9933 - 3 \times 1.5070) = 1.8486$$

Fifth iteration:

$$x = \frac{1}{28} (32 - 4 \times 1.5070 + 1.8486) = 0.9936$$

$$y = \frac{1}{17} (35 - 2 \times 0.9936 - 4 \times 1.8486) = 1.50696$$

$$z = \frac{1}{10} (34 - 0.9936 - 3 \times 1.50696) = 1.8486$$

Sixth iteration:

Sixth iteration:

$$\chi = \frac{1}{28} (32 - 4 \times 1.50696 + 1.8486) = 0.9936$$

$$y = \frac{1}{17} (35 - 2 \times 6.9936 - 4 \times 1.848) = 1.50696$$

$$z = \frac{1}{10} (34 - 0.9936 - 3 \times 1.50696) = 1.8486$$

The Solution is,

A Solve the following system by Gauss-Seidel method:
$$9x - y + 2z = 9$$

$$x + 10y - 2z = 15$$

$$2x - 2y - 13z = -17$$

Solution:

The given system of equations are,
$$9x-y+2z=9 \longrightarrow 0$$

$$x+10y-2z=15 \longrightarrow 2$$

$$2x-2y-13z=-17 \longrightarrow 3$$

Clearly the coefficient matrix is diagonally dominant, we can apply Gauss-Seidel method.

3=

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

From ①, ② and ③, we have
$$x = \frac{1}{4} (9 + y - 2z) \rightarrow ④$$

$$y = \frac{1}{10} (15 - x + 2z) \rightarrow ⑤$$

$$z = \frac{1}{13} (2x - 2y + 17) \rightarrow ⑥$$

First iteration:

Putting
$$y=0, z=0$$
 in \bigcirc , $x=1$

Putting $x=1, z=0$ in \bigcirc , $y=1.4$

Putting $x=1, y=1.4$ in \bigcirc , $z=1.3626$

Second iteration:

Putting
$$y = 1.4$$
, $Z = 1.3626$ in $\textcircled{4}$, $Z = \frac{1}{9} (9 + 1.4 - 2 \times 1.3626) = 0.8528$

Putting $\chi = 0.8528$, $Z = 1.3626$ in $\textcircled{5}$, $Y = \frac{1}{10} (15 - 0.8528 + 2 \times 1.3626) = 1.6872$

Putting $\chi = 0.8528$, $\chi = 1.6872$ in $\textcircled{6}$, $\chi = 1.6872$
 $\chi = \frac{1}{10} (2 \times 0.8528 - 2 \times 1.6872 + 17) = 1.1795$
 $\chi = \frac{1}{13} (2 \times 0.8528 - 2 \times 1.6872 + 17) = 1.1795$

Third iteration:

$$x = \frac{1}{9} (9 + 1.6872 - 2 \times 1.1793) = 0.9254$$

$$y = \frac{1}{10} (15 - 0.9254 + 2 \times 1.1793) = 1.6453$$

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

$$Z = \frac{1}{13} (2 \times 0.9254 - 2 \times 1.6433 + 17) = 1.1972$$

Fourth iteration:

$$x = \frac{1}{9} (9 + 1.6433 - 2 \times 1.1972) = 0.9165$$

$$y = \frac{1}{10} (15 - 0.9165 + 2 \times 1.1972) = 1.6478$$

$$Z = \frac{1}{13} (2 \times 0.9165 - 2 \times 1.6478 + 17) = 1.1952$$

Fifth iteration:

$$x = \frac{1}{9} (9 + 1.6478 - 2 \times 1.1952) = 0.9175$$

$$y = \frac{1}{10} (15 - 0.9175 + 2 \times 1.1952) = 1.6473$$

$$Z = \frac{1}{13} (2 \times 0.9175 - 2 \times 1.6473 + 17) = 1.1954$$

Sixth iteration:

$$\chi = \frac{1}{9} \left(9 + 1.6473 - 2 \times 1.1954 \right) = 0.9174$$

$$y = \frac{1}{10} (15 - 0.9174 + 2 \times 1.1954) = 1.6473$$

$$Z = \frac{1}{13} (2 \times 0.9174 - 2 \times 1.6473 + 17) = 1.1954$$

The solution is,

$$\chi = 0.9174$$
, $y = 1.6473$, $\chi = 1.1954$