

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Latin Square Design (LSD) :

It is a three factor experiment

Procedure:

Step 1: Null hypothesis : Ho: There is no significant difference between columns, rows and treatments

Alternative hypothesis: H .: There is a significant

difference between columns, rows and treatments.

Step 2: * Find N

+ Find T

* Find C.F = T2/N

Step 3: Find

$$* SST = \Sigma \chi_1^2 + \Sigma \chi_2^2 + \Sigma \chi_3^2 + \cdots - C.F$$

$$\# SSC = \frac{(\Sigma_{1})^{2} + (\Sigma_{1})^{2} + (\Sigma_{3})^{2} + \dots - C.F}{c_{1}}$$

$$+ SSR = \frac{\left(\leq y_1 \right)^2}{\gamma_1} + \frac{\left(\leq y_2 \right)^2}{\gamma_2} + \frac{\left(\leq y_3 \right)^2}{\gamma_3} + \dots - C.F$$

Arrange the data by treatment wise.

$$\# SSK = (\underbrace{SZ_1)^2}_{K} + \underbrace{(SZ_2)^2}_{K} + (\underbrace{SZ_3)^2}_{K} + \dots - C.F$$

where k - number of treatments (columns)

Step 5: ANOVA Table:

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Source of Variation	Degree of freedom	Sum of squares	Mean Sum of	Variance Yatio	Table Value
Between	K-1	SSC	MSC = SSC K-1	Fc = MSC MSE	F, (K-1,
Between	K-1	SSR	$MSR = \frac{SSR}{K-1}$	FR = MSR MSE	(K-1)(K-2))
Be tween theatments	K-1	Ssk	MEK = SSK K-1	F _K = MSK MSE	Fa (K-1, (K-1) (K-2))
Be tween errors	(K-1)(K-2)	SSE	MSE = SSE $(k-1)(k-2)$	1910 2	Fx (K-1,(K-1) (K-2))

Step 6: Decision:

If $F_C < F_R < F_A$, $F_K < F_A$ it is accepted otherwise it is rejected.

Problems :

(in kgs) of paddy where P, Q, R, S denote the different methods of cultivation.

Examine whether the different methods of cultivation have given significantly different yields.

Soln:

Step1: Null hypothesis: Ho: There is no significant difference between rows, columns and treatments.

Alternative hypothesis: Ho: There is a significant difference between rows, columns and treatments.

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

	orio	gin = 1	20						
	χ,	χ,	x ₃	×	Total	2(1	x2	×3	x42
y ,	2	,	3	2	8	4	1 -	9	4
y ₂	<i>J</i> .	3	2	5	14	16	9	4-	25
y ₃	0	-1	0	1	0	0	1	D	1
	2.	3	1	2	8	4	9	1	4
94	8	6	6	10	30	24	20	14	34

Step 2:

$$N = 16$$

$$T = 30$$

$$C.F = \frac{T^2}{N} = \frac{30^2}{16} = 56.25$$

$$\underline{Step 3}:$$

$$SST = \Xi x_1^2 + \Xi x_2^2 + \Xi x_3^2 + \Xi x_4^2 - C.F$$

$$= 24 + 20 + 14 + 34 - 56.25$$

$$\underline{SST} = 35.75$$

$$SSC = (\underline{\Xi x_1})^2 + (\underline{\Xi x_2})^2 + (\underline{\Xi x_3})^2 + (\underline{\Xi x_4})^2 - C.F$$

$$= \frac{8^2}{4} + \frac{6^2}{4} + \frac{6^2}{4} + \frac{10^2}{4} - 56.25$$

$$\underline{SSC} = 2.75$$

$$SSR = (\underline{\Xi y_1})^2 + (\underline{\Xi y_2})^2 + (\underline{\Xi y_3})^2 + (\underline{\Xi y_4})^2 - C.F$$

$$= \frac{8^2}{4} + \frac{14^2}{4} + 0 + \frac{8^2}{4} - 56.25$$

$$\underline{SSR} = 24.75$$

Step 4: Arrange treatments P, O, R, S in columnwise.

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

z_1	Z,	73	Zy		
P	Q	R	S		
1	2	3	2		
2.	4	3	5		
0	- 1	1	0		
2	1	2	3		
5	6	9	10		
	P 1 2 0 2	P Q 1 2 2 4 0 -1 2 1	P Q R 1 2 3 2 4 3 0 -1 1 2 1 2		

$$SSK = \frac{(SZ_1)^2 + (SZ_2)^2 + (SZ_3)^2 + (SZ_4)^2 - C.F}{K}$$

$$= \frac{5^2 + \frac{6^2}{4} + \frac{9^2}{4} + \frac{10^2}{4} - 56.25}{SSK = 4.25}$$

$$SSE = SST - SSC - SSR - SSK$$

$$SSE = 4$$

Step 5: ANOVA table :

					1
Source	Degree	Sum of Squares	Mean Sum of Squares	Variance ratio	Table Value
Between	freedom	SSC = 2.75	MSC = SSC	Fc = MSC MSE	
Column	K-1 = 3	330 = 23	K-1		4
			. 2 0. 114	= 1.375	Fx (3,6)
Between	K-1 = 3	SSR = 24.75	$MSR = \frac{SSR}{K-I}$	FR = MSR	= 4.76.
YOUS			= .8.25	MSE = 12.369	
Between	K-1=3	SSK = 4.25	MSK = SSK	F _K = MSK	
treatments			k-1 = 1-417	MSE	
Between	64 12 (V-2)		MSE = SSE	_ = 2.124	
	= (4-1)(4-2)	SSE = 4	(K-1)(K-2)		
	= 6		= 0.667		

Step 6: Decision: the hypothesis Since $F_c < F_a$, $F_K < F_a$ we accept therever that there is no significant difference between columns and theatments.

Since $F_R > F_a$, then we seject the hypothesis that there is a significant difference between 90005.

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Comparison of RBD and CRD

- t. RBD is more efficient than CRD for most types of experimental work.
- 2. In CRD, grouping of the experimental size so as to allocate the treatments at Random to the experimental units is not done. But in RBD, treatments are allocated at Random within the units of each stratum.
- 3. RBD is more flexible than CRD since no Restrictions are placed on the number of treatments or the number of seplications.

Comparison of LSD and RBD

- 1. In LSD, the number of treatments is equal to the number of Aeplications whereas there is no such Aestrictions on treatments and Replications in RBD.
- 2. ISD is known to be suitable for a case when the number of treatments is between 5 and 12 since the square becomes large and does not gemain homogeneous, whereas RBD can be used for any number of treatments.
- 3. In the field layout, LSD can be performed on a square field while RBD can be performed either on a square or rectangular field.
 - 4. The main advantage of LSD is that it controls the Variations between the Glows and Columns, whereas RBD controls the effect of one direction and hence the experimental error is seduced to a large extent.