UNIT - 1

Two marks

- 1. Define i) Discrete random variable
 - ii) Continuous random variable
 - i) Let X be a random variable, if the number of possible values of X is finite or count ably finite, then X is called a discrete random variable.
 - ii) A random variable X is called the continuous random variable, if x takes all its possible values in an interval.
- 2. Define probability mass function (PMF):

Let X be the discrete random variable taking the values X_1 , X_2 Then the number P (X_i) = P(X = X_i) is called the probability mass function of X and it satisfies the following conditions.

i) $P(X_i) \ge 0$ for all;

ii)
$$\sum_{i=1}^{\infty} P(X_i) = 1$$

3. Define probability Density function (PDF):

Let x be a continuous random variable. The Function f(x) is called the probability density function (PDF) of the random variable x if it satisfies.

i) $f(x) \ge 0$

ii)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

4. Define cumulative distribution function (CDF):

Let x be a random variable. The cumulative distribution function, denoted by F(X) and is given by $F(X)=P(X \le x)$

5. If x is a discrete R.V having the p.m.f

$\mathbf{P}(\mathbf{X}): \qquad \mathbf{k} \qquad \mathbf{2k} \qquad \mathbf{3k}$

Find $P(x \ge 0)$

Answer:
$$6k = 1 \Rightarrow k = \frac{1}{6}$$

 $P[x \ge 0] = 2k + 3k \Rightarrow P[x \ge 0] = \frac{1}{6}$

6. The random variable x has the p.m.f. P (x)= $\frac{x}{15}$, x=1,2,3,4,5 and = 0 else where.

Find P $[\frac{1}{2} < x < \frac{5}{2}/x > 1]$.**Answer:** P $[\frac{1}{2} < x < \frac{5}{2}/x > 1] = \frac{P[x=2]}{P(x>1)} = \frac{P[x=2]}{1 - P(x \le 1)} = \frac{2/15}{1 - 1/15} = \frac{1}{7}$

7. If the probability distribution of X is given as :

	Х	1	2	3	4		
	P(X)	0.4	0.3	0.2	0.1		
Find P $\left[\frac{1}{2} < x < \frac{7}{2}/x > 1\right]$.							

Answer :

$$P\left[\frac{1}{2} < x < \frac{7}{2}/x > 1\right] = \frac{P[1 < x < 7/2]}{P(x > 1)} = \frac{P(x = 2) + P(x = 3)}{1 - P(x = 1)} = \frac{0.5}{0.6} = \frac{5}{6}$$

8. A.R.V. X has the probability function

Х	-2	-1	0	1
P(X)	0.4	k	0.2	0.3

Find k and the mean value of X

Answer:

k=0.1 Mean =
$$\sum xP(x) = \frac{1}{10} [-8-1+0+3] = -0.6$$

9. If the p.d.fof a R.V. X is $f(x) = \frac{x}{2}$ in $0 \le x \le 2$, find

P[x > 1.5/x > 1].

Answer :

$$P[x > 1.5/x > 1] = \frac{P[x > 1.5]}{P(x > 1)} = \frac{\int_{1.5}^{2} \frac{x}{2} dx}{\int_{1}^{2} \frac{x}{2} dx} = \frac{4 - 2.25}{4 - 1} = 0.5833$$

10.If the p.d.f of a R.V.X is given by $f(x) = \{1/4, -2 < x < 2.0, \text{ else where. Find } P[|X|>1].$

Answer:

$$P[|X|>1] = 1 - P[|X|<1] = 1 - \int_{-1}^{1} \frac{1}{4} dx = \frac{1}{2}$$

11. If $f(x) = kx^2$, 0<x<3 is to be density function, Find the value of k.

Answer:

$$\int_0^3 kx^2 dx = 1 \Rightarrow 9k = 1 \therefore k = \frac{1}{9}$$

12. If the c.d.f. of a R.V X is given by F(x) = 0 for x < 0; $= \frac{x^2}{16}$ for $0 \le x < 4$ and =

1 for $x \ge 4$, find P(X > 1/X < 3).

Answer:

$$P(X > 1/X < 3) = \frac{P[1 < X < 3]}{P[0 < X < 3]} = \frac{F(3) - F(1)}{F(3) - F(0)} = \frac{8/16}{9/16} = \frac{8}{9}$$

13. The cumulative distribution of X is $F(x) = \frac{x^3+1}{9}$, -1, < X < 2 and =

0, otherwise. Find P[0 < X < 1].

Answer:

$$P[0 < X < 1] = F(1) - F(0) = \frac{2}{9} - \frac{1}{9} = \frac{1}{9}$$

14. A Continuous R.V X that can assume any value between x=2 and x=5 had the p.d.f f(x) = k(1+x). Find P(x<4).

Answer:

$$\int_{2}^{3} k(1+x)dx = 1 \Rightarrow \frac{27k}{2} = 1 \quad \therefore k = \frac{2}{27}$$
$$P[X<4] = \int_{2}^{4} \frac{2}{27} (1+x)dx = \frac{16}{27}$$

15. The c.d.f of X is given by F (x) = $\begin{bmatrix} 0, x > 0 \\ x^2, & 0 \le x \le 1 \end{bmatrix}$ Find the p.d.f of x, and 1, x > 1

obtain P(X>0.75).

Answer:

$$F(x) = \frac{d}{dx}F(x) = \begin{bmatrix} 2x, 0 \le x \le 1\\ 0, otherwise \end{bmatrix}$$
$$P[x<0.75] = 1 - P[X \le 0.75] = 1 - F(0.75) = 1 - (0.75)^2 = 0.4375$$

16. Check whether $f(x) = \frac{1}{4} x e^{-x/2}$ for $0 < x < \infty$ can be the p.d.f of X.

Answer:

$$= \int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \frac{x}{4} e^{-x/2} dx = \int_{0}^{\infty} t e^{-1} dt \text{ where } t = \frac{x}{2}$$
$$= (-te^{-1} - e^{-1})_{0}^{\infty} = -[0-1] = 1$$
$$\therefore f(x) \text{ is the } p. d. f \text{ of } X.$$

17.A continuous R.V X has a p.d.f $f(x) = 3x^2$, $0 \le x \le 1$. Find b such that P(X > b) = 0.05.

$$3\int_{b}^{1} x^{2} dx = 0.05 \Rightarrow 1 - b^{3} = 0.05 \Rightarrow b^{3} = 0.95 \therefore b = (0.95)^{\frac{1}{3}}$$

18.Let X be a random variable taking values -1, 0 and 1 such that P(X=-1) = 2P(X=0) = P(X=1). Find the mean of 2X-5.

Answer:

$$\sum P(X = x) = 1 \implies 5P(X = 0) = 1 \therefore P(X = 0) = \frac{1}{5}$$

Probability distribution of X:

E[2X-5] = 2E(X) - 5 = 2[0] - 5 = -5.

19. Find the cumulative distribution function F(x) corresponding to the p.d.f.

$$F(\mathbf{x}) = \frac{1}{\pi(1+x^2)}, -\infty < \chi < \infty.$$

Answer

F(x) =
$$\int_{-\infty}^{x} f(x) dx = \frac{1}{\pi} \int_{-\infty}^{x} \frac{dx}{1+x^2} = \frac{1}{\pi} [tan^{-1}x]$$

= $\frac{1}{\pi} [\frac{\pi}{2} + tan^{-1}x]$

20. The diameter of an electric cable, say X is assumed to a continues R.V with

p.d.f of given by $f(x) = kx(1-x), 0 \le x \le 1$. Determine k and $P\left(x \le \frac{1}{3}\right)$

$$\int_{0}^{1} kx(1-x)dx = 1 \implies k\left[\frac{1}{2} - \frac{1}{3}\right] = 1 \quad \therefore k = 6$$

$$P\left[X \le \frac{1}{3}\right] = 6\int_0^{1/3} (x - x^2) dx = 6\left[\frac{x^2}{2} - \frac{x^3}{3}\right]_0^{1/3} = \left[(3x^2 - 2x^3)\right]_0^{1/3} = \frac{1}{3} - \frac{2}{27} = \frac{7}{27}$$

21. A random variable Xhas the p.d.f f(x) given by $f(x) = \begin{cases} Cxe^{-x}, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}$. Find the value of C and C.D.F of X.

Answer:

$$C\int_{0}^{\infty} xe^{-x}dx = 1 \Rightarrow C[x(-e^{-x}]_{0}^{\infty} = 1$$
$$\therefore C[-0+1] = 1 \Rightarrow C = 1$$

 $C.D.F: F(x) = \int_0^x f(x) dx = 1 - (1+x)e^{-x}$ for $x \ge 0$.

22. State the properties of cumulative distribution function.

Answer:

- i) $F(-\infty)=0$ and $F(\infty) = 1$.
- ii) $F(\infty)$ is non decreasing function of X.
- iii) If $F(\infty)$ is the p.d.f of X, then f(x)=F'(x)
- iv) $P[a \le X \le b] = F(b) F(a)$
- 23. Define the raw and central moments of R.Vand state the relation between them. **Answer:**

Raw moment
$$\mu'_r = E[X^r]$$

Central moment $\mu_r = E[\{X - E(X)\}^r].$

$$\mu_r = \mu'_r - rC_1 \mu'_{r-1} \mu'_r + rC_2 \mu'_{r-2} (\mu'_r)^2 - \dots + (-1)^r (\mu'_1)^r$$

24. The first three moments of a R.V.X about 2 are 1, 16, -40. Find the mean,

variance of X. Hence find μ_3 .

Answer:

 $E(X) = {\mu'}_1 + A \Rightarrow Mean = 1 + 2 = 3$

Variance = $E(X^2) - [E((X)]^2 = 16 - 1 = 15$

$$\mu_3 = \mu'_3 - 3\mu'_2\mu'_1 + 2(\mu'_1)^3 = -86$$

25. Find the r-th moment about origin of the R.V X with p.d.ff(x) =

 $\begin{bmatrix} Ce^{-ax}, x \ge 0\\ 0, else where \end{bmatrix}$

Answer:

$$\int_{0}^{\infty} C e^{-ax} dx = 1 \Rightarrow C = a$$
$$\mu'_{r} = \int_{0}^{\infty} x^{r} f(x) dx = a \int_{0}^{\infty} x^{(r+1)-1} e^{-ax} dx = \frac{\sqrt{(r+1)}}{a^{r}} = \frac{r!}{a^{r}}$$

26. A C.R.V X has the p.d.f $f(x)=kx^2e^{-x}$, x > 0. Find the r-th moment about the origin.

Answer:

$$\int_{0}^{\infty} kx^{2}e^{-x}dx = 1 \implies k = \frac{1}{2}$$
$$\mu'_{1} = E[X^{r}] = \frac{1}{2}\int_{0}^{\infty} x^{r+2}e^{-x}dx = \frac{1}{2}\sqrt{(r+3)} = \frac{(r+2)!}{2}$$

27. If X and Y are independent R,V's and Z = X+Y, prove that $M_x(t)M_y(t)$.

Answer:

$$M_z(t) = E[e^{tz}] = E[e^{t(X+Y)}] = E[e^{tx}]E[e^{ty}]$$
$$= M_x(t)M_y(t).$$

28. If the MGF of X is $M_x(t)$ and if Y=aX+b show that $M_y(t) = e^{bt}M_x(at)$.

Answer:

$$M_{y}(t) = E[e^{ty}] = E[e^{bt}e^{axt}] = e^{bt}E[e^{(at)X}] = e^{bt}M_{x}(at).$$

29. If a R.V X has the MGF M(t)= $\frac{3}{3-t}$, obtain the mean and variance of X.

Answer:

$$M(t) = \frac{3}{3[1 - \frac{t}{3}]} = 1 + \frac{t}{3} + \frac{t^2}{9} + \dots$$

$$E(x) = \text{Co-efficient of } \frac{t}{1!} \text{in } (1) = \frac{1}{3}$$

$$E(X^2) = \text{co-efficient of } \frac{t^2}{2!} \text{in } (1) = \frac{1}{9}$$

$$\therefore \text{ Mean} = \frac{1}{3} \text{ and } V(X) = E(X^2) - [E(X)]^2 = \frac{1}{9}$$

30. If the r-th moment of a C.R.V X about the origin is r!, find the M.G. F of X.

Answer:

$$M_x(t) = \sum_{r=0}^{\infty} E[X^r] \cdot \frac{t^r}{r!} = \sum_{r=0}^{\infty} t^r$$
$$= 1 + t + t^2 + \cdots = (1 - t)^{-1} = \frac{1}{1 - t}$$

31. If the MGF of a R.V. X is $\frac{2}{2-t}$, Find the standard deviation of x.

Answer:

$$M_{x}(t) = \frac{2}{2-t} = (1 - \frac{t}{2})^{-1} = 1 + \frac{t}{2} + \frac{t^{2}}{4} + \cdots$$
$$E(X) = \frac{1}{2}; E(x^{2}) = \frac{1}{2}; V(X) = \frac{1}{4} \Rightarrow S.D \text{ of } X = \frac{1}{2}$$

32. Find the M.G.F of the R.V X having p.d.f $f(x) = \begin{bmatrix} \frac{1}{3}, -1 < x < 2\\ 0, else where \end{bmatrix}$

$$M_x(t) = \int_{-1}^{2} \frac{1}{3} e^{tx} dx = \frac{1}{3t} [e^{2t} - e^{-t}] \text{ for } t \neq 0$$

When t=0, $M_x(t) = \int_{-1}^{2} \frac{1}{3} dx = 1$

$$\therefore M_{x}(t) = \begin{bmatrix} \frac{e^{2t} - e^{-t}}{3t}, t \neq 0\\ 1, t = 0 \end{bmatrix}$$

33. Find the MGF of a R.V X whose moments are given by $\mu'_r = (r = 1)!$

Answer:

$$M_x(t) = \sum_{r=0}^{\infty} E[X^r] \cdot \frac{t^r}{r!} = \sum_{r=0}^{\infty} (r+1)t^r$$
$$= 1 + 2t + 3t^2 + \dots = (1-t)^{-2}$$
$$\therefore M_x(t) = \frac{1}{(1-t)^2}$$

34. Give an example to show that if p.d.f exists but M.G.F. does not exist.

Answer:

$$P(x) = \begin{bmatrix} \frac{6}{\pi^2 x^2}, x = 1, 2, \dots \\ 0, otherwise \end{bmatrix}$$
$$\sum P(x) = \frac{6}{\pi^2} \Rightarrow \sum_{x=1}^{\infty} \frac{1}{x^2} = \frac{6}{\pi^2} \left[\frac{\pi^2}{6} \right] = 1$$

 \therefore P(x) is a p.d.f.

But $M_x(t) = \frac{6}{\pi^2} \sum \frac{e^{tx}}{x^2}$, which is a divergent series

 $\therefore M_x(t)$ doesnt exist.

35. The moment generating function of a random variable X is given by $M_x(t) =$

 $\frac{1}{3}e^{t} + \frac{4}{15}e^{3t} + \frac{2}{15}e^{4t} + \frac{4}{15}e^{5t}$. Find the probability density function of X.

Х	1	2	3	4
P(X)	1/3	4/15	2/15	4/15

36.Let $M_x(t) \frac{1}{(1-t)}$, t < 1 be the M.G.F of a R.V X. Find the MGF of the RV Y=2X+1.

Answer:

If Y =aX+b,
$$M_y(t) = e^{bt}M_x(at)$$
 \therefore $M_y(t) = \frac{e^t}{1-2t}$.

37.Suppose the MGF of a RV X is of the form $M_x(t) = (0.4e^t + 0.6)^8$.What is the MGF of the random variable Y=3X+2.

Answer:

$$M_{y}(t) = e^{2t} M_{x}(3t) = e^{2t} [(0.4)e^{3t} = 0.6)]^{8}$$

38. The moment generating function of a RV X is $\left[\frac{1}{5} + \frac{4e^t}{5}\right]^{15}$. Find the MGF of

Y = 2X + 3.

Answer:

If Y = 2X + 3, then $M_y(t) = e^{3t}M_x(2t)$.

$$\therefore M_{y}(t) = e^{3t} \left[\frac{1}{5} + \frac{4e^{t}}{5} \right]^{15}$$

39. If a random variable takes the values -1, 0 and 1 with equal probabilities, find the MGF of X.

$$M_{x}(t) = \sum e^{tx} P(x) = \frac{1}{3}e^{-1} + \frac{1}{3} + \frac{1}{3}e^{1} = \frac{1}{3}[1 + e^{1} + e^{-1}]$$

1. Determine the binomial distribution whose mean is 9 and whose standard deviation is $\frac{3}{2}$.

Answer:

np = 9 and npq =
$$\frac{9}{4}$$
. $q = \frac{npq}{np} = \frac{1}{4} \Rightarrow p = 1 - q = \frac{3}{4}$
np = 9 \Rightarrow n= 9 $\times \frac{4}{3} = 12$
 $\therefore P[X=r] = 12 C_r \cdot \left[\frac{3}{4}\right]^r \left[\frac{1}{4}\right]^{12-r}$, $r = 0, 1, 2, \dots, 12$

2. A die is thrown 3 times. If getting a '6' is considered a success, find the probability of atleast two successes.

Answer:

P=1/6; q= 5/6; n=3.
P[atleast two successes] =
$$P(2) + P(3)$$

$$= 3C_2 \cdot \left[\frac{1}{6}\right]^2 \frac{5}{6} + 3C_3 \cdot \left[\frac{1}{6}\right]^3 = \frac{2}{27}$$

3. Find the MGF of binomial distribution.

Answer:

$$M_x(t) = \sum_{r=0}^n nC_r \cdot (pe^t)^r \cdot q^{n-r}$$
$$= (q + pe^t)^n$$

4. For a random variable X, $M_x(t) = \frac{1}{81}(e^t + 2)^4$, find P[X \le 2].

Answer:

$$M_{\chi}(t) = \left(\frac{2}{3} + \frac{1}{3}e^t\right)^4.$$

For Binomial distribution, $M_x(t) = (q + pe^t)$

$$\therefore n=4, \qquad q=2/3, \qquad p=1/3 \therefore \qquad P[X \le 2] = P(0) + P(1) + P(2) = \left(\frac{2}{3}\right)^4 + 4C_1 \frac{1}{3} \left(\frac{2}{3}\right)^3 + 4C_1 \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^2 = \frac{1}{81} [16 + 32 + 24] = \frac{72}{81} = 0.8889$$

- 5. The mean and variance of a binomial variance are 4 and 4/3 respectively, find
- $P[X \ge 1].$

Answer:

np = 4, npq =
$$\frac{4}{3} \Rightarrow q = \frac{1}{3}$$
 and $p = \frac{2}{3} \therefore n = 4 \times \frac{3}{2} = 6$.
P[X \ge 1] = 1 - P[X < 1] = 1 - P[X = 0]
= 1 - $\left(\frac{1}{3}\right)^6$ = 0.9986

6. For a binomial distribution, mean is 6 and standard deviation is $\sqrt{2}$. Find the first two terms of the distribution.

Answer:

np = 6, npq = 2;
$$q = \frac{2}{3} \Rightarrow q = \frac{1}{3} \therefore p = \frac{2}{3}$$
. Here n = 9.
The first two terms are $\left(\frac{1}{3}\right)^9$, $9C_1\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^8$

7. A certain rare blood can be found in only 0.05% of people. If the population of a randomly selected group is 3000, what is the probability that atleast 2 people in the group have this rare blood type ?

P=0.05% => p=0.0005; n = 3000;
$$\land = np$$

$$\Rightarrow \qquad \lambda = 3000 \text{ x} \frac{5}{10000} = 1.5$$

$$P[X \ge 2] = 1 - P(X < 2) = 1 - P(X = 1)$$

= $1 - e^{-1.5} \left(1 + \frac{1.5}{1!}\right) = 0.4422$

8. It is known that 5% of the books bound at a certain bindery have defective bindings. Find the probability that 2 of 100 books bound by this bindery will have defective bindings.

Answer:

- $\lambda = np \implies \lambda = 100 \ge 5/100 = 5$
- $\therefore P[X=2] = \frac{5^2 e^{-5}}{2!} = 0.084$
- If X is a poissonvariate such that P(X=2) = 9P(X=4) + 90P(X=6), find the variance.

Answer:

$$\frac{e^{-\lambda}\lambda^2}{2!} = \frac{9e^{-\lambda}\lambda^4}{4!} + \frac{90e^{-\lambda}\lambda^6}{6!} \Longrightarrow \lambda^4 + 3\lambda^2 - 4 = 0$$
$$\Longrightarrow (\lambda^2 + 4)(\lambda^2 - 1) = 0$$
$$\therefore \lambda^2 = 1 \Longrightarrow \text{variance} = \lambda = 1.$$

10. The moment generating function of a random variable X is given by $M_x(t) = e^{3(e^t - 1)}$. Find P(X=1)

Answer:

$$M_{\chi}(t) = e^{\lambda(e^{t}-1)} = e^{3(e^{t}-1)} \Longrightarrow \lambda = 3$$

$$P(X = 1) = \land e^{-\land} \Longrightarrow P(X=1) = 3e^{-3}.$$

11. State the conditions under which the position distribution is a limiting case of the Binomial distribution.

Answer:

i) $n \rightarrow \infty$

- ii) $p \rightarrow 0$
- iii) $np = \lambda$, a constant

12. Show that the sum of 2 independent poisson variates is a poisson variates.

Answer:

Let $X \sim P(\lambda_1)$ and $Y \sim P(\lambda_2)$

Then
$$M_x(t) = e^{\lambda_1(e^t - 1)}; M_y(t) = e^{\lambda_2(e^t - 1)}$$

$$M_{x+y}(t) = M_x(t)M_y(t) = e^{(e^t-1)(\lambda_1+\lambda_2)}$$

 \Rightarrow X + Y is also a poissonvariate

13. In a book of 520 pages, 390 typo-graphical errors occur. Assuming poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error.

Answer:

$$A = \frac{390}{520} = 0.75$$
$$e^{-\lambda} \lambda^{x} e^{-0.75} (0.75)^{x}$$

$$P(X=x) = \frac{e^{-x}}{x!} = \frac{e^{-(0.73)}}{x!}, x = 0.1.2,...$$

Required probability = $[P(X = 0)]^5 = (e^{-0.75})^5 = e^{-3.75}$

14. If X is a poissonvariate such that P(X=2)=2/3 P(X=1) evaluate P(X=3).

Answer:

$$\frac{e^{-\lambda}\lambda^2}{2!} = \frac{2}{3}\frac{e^{-\lambda}\lambda}{1!} \Longrightarrow \lambda = \frac{4}{3}$$
$$\therefore P[X=3] = \frac{e^{-\lambda}\left(\frac{4}{3}\right)^3}{3!}$$

15. If for a poisson variate X, $E(X^2) = 6$, What is E(X)?

Answer:

 $\lambda^2 + \lambda = 6 \Longrightarrow \lambda^2 + \lambda - 6$

 $= 0 \Longrightarrow (\lambda + 3)(\lambda - 2) = 0 \Longrightarrow \lambda = 2, -3$

But $\lambda > 0$, $\lambda = 2 \cdot E(X) = \lambda = 2$

16. If X is a poisson variate with mean λ , show that $E(X^2) = \lambda E(X + 1)$.

Answer:

 $E(X^2) = A^2 + A$

$$E(X+1) = E(X)+1 = A + 1$$

$$\therefore \mathbf{E}(X^2) = \wedge (\wedge + 1) = \wedge \mathbf{E}(X + 1)$$

17. The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{2}$. What is the probability that a repair takes at least 10 hours given that its duration exceeds 9 hours ?

Answer:

Let X be the R.V which represents the time to repair the machine.

$$P[X \ge 10/x \ge 9] = P(X \ge 1) \text{ (by memory less property)}$$
$$= \int_{1}^{\infty} \frac{1}{2} e^{-\frac{x}{2}} dx = 0.6065$$

18. The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{3}$. What is the probability that the repair time exceeds 3

hours ?

Answer:

X- represent the time to repair the machine

P.d.f of X,
$$f(x) = \frac{1}{3}e^{-\frac{x}{3}}$$
, x>0
P(x>3) = $\int_{3}^{\infty} \frac{1}{3}e^{-\frac{x}{3}}dx = e^{-1} = 0.3679$

19. Find the MGF of an exponential distribution with parameter λ .

$$M_x(t) = \lambda \int_0^\infty e^{tx} e^{-\lambda x} dx = \lambda \int_0^\infty e^{-(\lambda - x)x} dx$$

$$= \frac{\lambda}{\lambda - t} = \left(1 - \frac{t}{\lambda}\right)^{-1}$$

20. Mention any four properties of normal distribution ?

Answer:

- (1) The curve is bell shaped
- (2) Mean, Median, Mode coincide.
- (3) All odd central moments vanish
- (4) X-axis is an asymptote to the normal curve
- 21.If X is normal variate with mean 30 and S.D 5, find P[26 < X < 40]

Answer:

P
$$[26 < X < 40] = P [-0.8 \le Z \le 2]$$
 where $Z = \frac{X-30}{5}$
= P $[0 \le Z \le 0.8] + P[0 \le Z \le 2]$
= 0.2881 + 0.4772 = 0.7653

22. If X is a normal variate with mean 30 and s.d 5, find P [$|X - 30| \le 5$]. **Answer:**

P [
$$|X - 30| \le 5$$
] = P [$25 \le X \le 35$] = P [$-1 \le Z \le 1$]
= 2P (2 ≤ Z≤ 1) = 2(0.3413) = 0.6826

23.X is normally distributed R.V with mean 12 and SD 4. Find P [$X \le 20$]. Answer:

P [X ≤ 20] = P [Z ≤ 2] where
$$Z = \frac{X-12}{4}$$

= P [-∞ ≤ Z 0] + P [0 ≤ Z ≤ 2]

= 0.5 + 0.4772 = 0.9772

24.For a certain normal distribution, the first moment about 10 is 40 and the fourth moment about 50 is 48. Find the mean and s.d of the distribution.

Answer:

Mean A +
$$\mu'_1 \Rightarrow$$
 Mean = 10 + 40 = 50

$$\mu'_{1}(about the point X = 50) = 48 \Rightarrow \mu_{4} = 48$$

Since mean is 50, $3\sigma^4 = 48$

$$\sigma=2.$$

25.If X is normally distributed with mean 8 and s.d4 , find P ($10 \leq X \leq 15$). Answer:

P (
$$10 \le X \le 15$$
) = P [$0.5 \le X \le 1.75$]
= P [$0.5 \le X \le 1.75$] - P [$0 \le X \le 0.5$]
= 0.2684

26.X is a normal variate with mean 1 and variance 4, Y is another normal variate independent of X with mean 2 and variance 3, what is the distribution of

X + 2Y ?

$$E [X + 2Y] = E (X) + 2E (Y) = 1 + 4 = 5$$
$$V[X+2Y] = V (X) + 4V(Y) = 4 + 4(3) = 16$$
$$X + 2Y \sim N(5,16)$$
by additive property.

UNIT 2

Two marks

1. The bivariate random variable X and Y has the pdf f(x,y)={

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{k}\mathbf{x}^2(\mathbf{8} - \mathbf{y}), \mathbf{x} < \mathbf{y} < 2\mathbf{x} \\ \mathbf{0} \le \mathbf{x} < 2 \end{cases} \text{ find } \mathbf{k}.$$

Ans:

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} f(x,y) dy dx = 1$$

$$\int_{0}^{2} \int_{x}^{2x} kx^{2} (8-y) dy dx = 1$$

$$k \int_{0}^{2} x^{2} \left(16x - \frac{4x^{2}}{2} - 8x + \frac{x^{2}}{2} \right) dx = 1$$

$$k \int_{0}^{2} \left(8x^{3} - \frac{3x^{4}}{2} \right) dx = 1$$

$$k \left[\frac{8x^{4}}{4} - \frac{3x^{5}}{10} \right]_{0}^{2} = 1$$

$$k \left[32 - \frac{48}{5} \right] = 1$$

$$k \left[\frac{112}{5} \right] = 1$$

$$k \left[\frac{112}{5} \right] = 1$$

2. The joint pdf of random variable x and y is given by $f(x,y) = kxye^{-(x^2+y^2)}, x > 0, y > 0$ find the value of k.

Ans:

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy=1$$

 $\int_{0}^{\infty} \int_{0}^{\infty} kxy e^{-(x^2+y^2)} dy dx = 1$

$$k\int_{0}^{\infty} y e^{-y^{2}} dy \int_{0}^{\infty} x e^{-x^{2}} dx = 1 \qquad \left[\int_{0}^{\infty} x e^{-x^{2}} dx = \frac{1}{2}\right]$$

 $k\frac{1}{2}\cdot\frac{1}{2}=1, k=4$

3. If X and Y have joint pdf $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{x} + \mathbf{y}, \mathbf{0} < \mathbf{x} < \mathbf{1}, \mathbf{0} < \mathbf{y} < \mathbf{1} \\ \mathbf{0}, & \text{otherwise} \end{cases}$. check whether X and Y are independent.

Ans:

The marginal density of X is

$$f(x) = \int_{-\infty}^{\infty} f(x,y) dy \qquad f(x) = \int_{0}^{1} (x+y) dy$$

$$f(x) = \left[xy + \frac{y^2}{2} \right]_{0}^{1} \qquad f(x) = x + \frac{1}{2}$$

$$f(y) = \int_{-\infty}^{\infty} f(x,y) dy \qquad f(y) = \int_{0}^{1} (x+y) dy$$

$$f(y) = \left[\frac{x^2}{2} + xy \right]_{0}^{1} \qquad f(y) = \frac{1}{2} + y$$

$$f(x).f(y) = \left(x + \frac{1}{2} \right) \left(y + \frac{1}{2} \right) \qquad f(x).f(y) \neq f(x,y)$$

4. Let X and Y have j.d.f f(x,y)=2, 0 < x < y < 1. Find m.d.f

Ans:

Marginal density of X is given by

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{x}^{1} 2 dy$$
$$= 2[y]_{x}^{1}$$
$$= 2(1-x), 0 < x < 1.$$

Marginal density function of Y is given by

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{y} 2dx = 2[x]_{0}^{y} = 2y, 0 < y < 1.$$

5. The j.d.f of the random variables X and Y is given by

$$f(x,y) = \begin{cases} 8xy, 0 < x < 1, 0 < y < x \\ 0, \text{ otherwise} \end{cases}$$
.findf_x(x).

Ans:

$$f_{x}(x) = \int_{-\infty}^{\infty} f(x,y) dy$$
$$= \int_{0}^{x} 8xy dy = 8x \left(\frac{y^{2}}{2}\right)_{0}^{x}$$
$$= 8x \left(\frac{x^{2}}{2}\right)$$

 $f_x(x) = 4x^3, 0 < x < 1$

6. Given
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{cx}(\mathbf{x} - \mathbf{y}), 0 < \mathbf{x} < 2, -\mathbf{x} < \mathbf{y} < \mathbf{x} \\ 0, \text{ otherwise} \end{cases}$$
, find c.

Ans:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dy dx = 1$$
$$\int_{0}^{2} \int_{-x}^{x} cx(x-y) dy dx = 1$$
$$c \int_{0}^{2} \left[x^{2}y - x \cdot \frac{y^{2}}{2} \right]_{-x}^{x} dx = 1$$
$$c \int_{0}^{2} \left[x^{3} - \frac{x^{2}}{2} + x^{3} + \frac{x^{3}}{2} \right] dx = 1$$

$$c\int_{0}^{2} 2x^{3} dx = 1$$
$$2c\left[\frac{x^{4}}{4}\right]_{0}^{2} = 1$$
$$2c\left[\frac{16}{4}\right] = 1$$
$$c = \frac{1}{8}$$

6. The joint p.d.f of a bivariate random variable (X,Y) is given by $f(x,y) = \begin{cases} kxy, 0 < x < 1, 0 < y < 1\\ 0, \text{ otherwise} \end{cases}$, find K.

Ans:

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} f(x,y) dx dy = 1$$

$$\int_{0}^{1} \int_{0}^{1} kxy dx dy = 1$$

$$k \int_{0}^{1} \left[\frac{x^{2}}{2} y \right]_{0}^{1} dy = 1$$

$$k \left[\frac{y^{2}}{4} \right]_{0}^{1} = 1$$

$$k = 4$$

7. If the joint pdf of (x,y) is $f(x,y) = \frac{1}{4}, 0 < x, y < 1$, find $p(x+y \le 1)$.

Ans:

$$p(x + y \le 1) = p(x \le 1 - y)$$

= $\int_{0}^{1} \int_{0}^{1 - y} f(x, y) dx dy$
= $\int_{0}^{1} \int_{0}^{1 - y} \frac{1}{4} dx dy = \frac{1}{4} \int_{0}^{1} [x]_{0}^{1 - y} dy$
= $\frac{1}{4} \int_{0}^{1} [(1 - y)] dy$ = $\frac{1}{4} \left[y - \frac{y^{2}}{2} \right]_{0}^{1}$

$$=\frac{1}{4}\left[1-\frac{1}{2}\right] =\frac{1}{4}\cdot\frac{1}{2}=\frac{1}{8}$$

8. Two random variables X and Y have joint pdf $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{\mathbf{x}\mathbf{y}}{\mathbf{96}}, 0 < \mathbf{x} < 4, 1 < \mathbf{y} < 5\\ 0, \text{ otherwise} \end{cases}$, find

E(x).

Ans:

$$E(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y)dxdy$$

= $\int_{1}^{5} \int_{0}^{4} x\left(\frac{xy}{96}\right)dxdy$ = $\frac{1}{96} \int_{1}^{5} \left[y \cdot \frac{x^{3}}{3}\right]_{0}^{4} dy$
= $\frac{1}{96} \int_{1}^{5} \frac{64}{3} ydy$ = $\frac{64}{288} \left[\frac{y^{2}}{2}\right]_{1}^{5}$
= $\frac{2}{9} \left[\frac{25}{2} - \frac{1}{2}\right] = \frac{1}{9}(24)$
= $\frac{8}{3}$.

9. Let X be a Random variable with pdf $f(x) = \frac{1}{2}$, $-1 \le x \le 1$, and let $Y = X^2$, find E(Y). Ans:

$$Y = x^{2}$$

$$E(Y) = E(x^{2})$$

$$\int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{-\infty}^{\infty} x^{2} \left(\frac{1}{2}\right) dx = \frac{1}{2} \left(\frac{x^{3}}{3}\right)_{-1}^{1} = \frac{1}{6} (2) = \frac{1}{3}$$

10. If the joint pdf of (x,y) is given by $f(x, y) = x + y, 0 \le x, y \le 1$. Find E(XY). Ans:

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y) dxdy$$

$$= \int_{0}^{1} \int_{0}^{1} xy(x+y) dx dy$$

= $\int_{0}^{1} \int_{0}^{1} (x^{2}y + xy^{2}) dx dy$
= $\int_{0}^{1} \left(\frac{x^{3}}{3}y + \frac{x^{2}}{2}y^{2}\right)^{1} dy$
= $\int_{0}^{1} \left(\frac{y}{3} + \frac{y^{2}}{2}\right)^{1} dy$
= $\left(\frac{y^{2}}{6} + \frac{y^{3}}{6}\right)^{1} = \frac{2}{6} = \frac{1}{3}.$

11. Find the acute angle between the two lines of regression Ans:

The acute angle between the two lines of regression is $\tan \theta = \frac{1 - r^2}{r} \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \right).$

12. State the equation of the two regression lines. What is the formula for correlation coefficient

Ans:

X on Y is
$$(\mathbf{x} - \overline{\mathbf{x}}) = \mathbf{b}_{xy} (\mathbf{y} - \overline{\mathbf{y}})$$
 and Y on X is $(\mathbf{y} - \overline{\mathbf{y}}) = \mathbf{b}_{yx} (\mathbf{x} - \overline{\mathbf{x}})$.
Correlation coefficient $\mathbf{r} = \sqrt{\mathbf{b}_{xy} \cdot \mathbf{b}_{yx}}$.

13. If X and Y are independent random variables with variance 2 and 3. Find the variance of 3X+4Y.

Ans:

$$Var(x) = 2, Var(y) = 3$$
$$Var(3X + 4Y) = 3^{2}Var(X) + 4^{2}Var(Y)$$
$$= 9Var(X) + 16Var(Y)$$
$$= 9*2 + 16*3$$
$$= 66$$

14. The joint pdf of (X,Y) is given by $e^{-(x+y)}$, 0 < x, $y < \infty$. Are X and Y independent? Ans :

$$f(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$

$$= \int_{0}^{\infty} e^{-x} e^{-y} dy$$

= $e^{-x} \left(-e^{-y} \right)_{0}^{\infty} = -e^{-x} \left(0 - 1 \right) = e^{-x}$.
 $f(y) = \int_{-\infty}^{\infty} f(x, y) dx$
= $\int_{0}^{\infty} e^{-x} e^{-y} dx$
= $e^{-y} \left(-e^{-x} \right)_{0}^{\infty} = -e^{-y} \left(0 - 1 \right) = e^{-y}$.
 $(x) f(y) = e^{-x} e^{-y} = e^{-(x+y)} = f(x, y)$ Therefore, X any Y are independent.

15. The two lines of regression are 8x-10y+66=0, 40x-18y-214=0. Find the mean value of X and Y.

Ans:

f

$$8x-10y = -66$$
 (1)
 $40x-18y = 214$ (2)
Solving (1) and (2), we get $x = 104, y = 17$
Mean of X = 13
Mean of Y = 17.

16. The two regression lines are $x = \frac{9}{20}y + \frac{107}{20}$, $y = \frac{4}{5}x + \frac{33}{5}$. Find correlation coefficient?

Ans:

$$\mathbf{r} = \sqrt{\mathbf{b}_{xy} \cdot \mathbf{b}_{yx}}$$

Here, $\mathbf{b}_{xy} = \frac{\mathbf{9}}{\mathbf{20}}, \ \mathbf{b}_{yx} = \frac{\mathbf{4}}{\mathbf{5}}$
$$r = \sqrt{\frac{9}{20}} X \frac{\mathbf{4}}{5} = 0.6$$

UNIT 3

Two marks

1. Define Random processes and give an example of a random process.

A Random process is a collection of R.V $\{X(s,t)\}$ that are functions of a real variable namely time t where $s \in S$ and $t \in T$ Example:

 $\overline{X}(t) = A\cos(\omega t + \theta)$ where θ is uniformly distributed in $(0, 2\pi)$ where A and ω are constants.

2. State the four classifications of Random processes.

The Random processes is classified into four types

(i)Discrete random sequence

If both T and S are discrete then Random processes is called a discrete Random sequence.

(ii)Discrete random processes

If T is continuous and S is discrete then Random processes is called a Discrete Random processes.

(iii)Continuous random sequence

If T is discrete and S is continuous then Random processes is called a Continuous Random

sequence.

(iv)Continuous random processes

If T &S are continuous then Random processes is called a continuous

Random processes.

3. Define stationary Random processes.

If certain probability distributions or averages do not depend on t, then the random process $\{X(t)\}$ is called stationary.

4.Define first order stationary Random processes.

A random processes $\{X(t)\}$ is said to be a first order SSS process if $f(x_1, t_1 + \delta) = f(x_1, t_1)$ (i.e.) the first order density of a stationary process $\{X(t)\}$ is independent of time t

5. Define second order stationary Random processes

A RP $\{X(t)\}$ is said to be second order SSS if $f(x_1, x_2, t_1, t_2) = f(x_1, x_2, t_1 + h, t_2 + h)$ where $f(x_1, x_2, t_1, t_2)$ is the joint PDF of $\{X(t_1), X(t_2)\}$.

6. Define strict sense stationary Random processes

Sol: A RP $\{X(t)\}$ is called a SSS process if the joint distribution $X(t_1)X(t_{21})X(t_3)....X(t_n)$ is the same as that of $X(t_1 + h)X(t_2 + h)X(t_3 + h)...X(t_n + h)$ for all $t_1, t_2, t_3..., t_n$ and h > 0 and for $n \ge 1$.

7. Define wide sense stationary Random processes

A RP $\{X(t)\}$ is called WSS if $E\{X(t)\}$ is constant and $E[X(t)X(t+\tau)] = R_{xx}(\tau)$ (i.e.) ACF is a function of τ only.

8. Define jointly strict sense stationary Random processes

Sol: Two real valued Random Processes $\{X(t)\}$ and $\{Y(t)\}$ are said to be jointly stationary in the strict sense if the joint distribution of the $\{X(t)\}$ and $\{Y(t)\}$ are invariant under translation of time.

9. Define jointly wide sense stationary Random processes

Sol: Two real valued Random Processes $\{X(t)\}$ and $\{Y(t)\}$ are said to be jointly stationary in the wide sense if each process is individually a WSS process and $R_{XY}(t_1, t_2)$ is a function of t_1, t_2 only.

 Define Evolutionary Random processes and give an example. Sol: A Random processes that is not stationary in any sense is called an Evolutionary process. Example: Poisson process.

11. When is a random process said to be ergodic? Give an example

Answer: A R.P {X(t)} is ergodic if its ensembled averages equal to appropriate time averages. Example: $X(t) = A\cos(\omega t + \theta)$ where θ is uniformly distributed in $(0,2\pi)$ is mean ergodic.

12. Define Markov Process.

Sol: If for $t_1 < t_2 < t_3 < t_4$ $< t_n < t$ then $P(X(t) \le x / X(t_1) = x_1, X(t_2) = x_2$ $X(t_n) = x_n) = P(X(t) \le x / X(t_n) = x_n)$

Then the process $\{X(t)\}$ is called a Markov process.

13. Define Markov chain.

Sol: A Discrete parameter Markov process is called Markov chain.

14. Define one step transition probability.

Sol: The one step probability $P[X_n = a_j / X_{n-1} = a_i]$ is called the one step probability from the state a_i to a_j at the n^{th} step and is denoted by $P_{ij}(n-1,n)$

15. State the postulates of a Poisson process.

Let $\{X(t)\}$ = number of times an event A say, occurred up to time 't' so that

the sequence $\{X(t)\}, t \ge 0$ forms a Poisson process with parameter λ .

- (i) $P[1 \text{ occurrence in } (t, t + \Delta t)] = \lambda \Delta t$
- (ii) P[0 occurrence in $(t, t + \Delta t)$]=1- $\lambda \Delta t$
- (iii) P[2 or more occurrence in $(t, t + \Delta t)$]=0
- (iv) X(t) is independent of the number of occurrences of the event in any interval prior and after the interval (0,t).
- (v) The probability that the event occurs a specified number of times in (t_0,t_0+t) depends only on t, but not on t_0 .

16. State any two properties of Poisson process

Sol: (i) The Poisson process is a Markov process

- (ii) Sum of two independent Poisson processes is a Poisson process
- (iii) The difference of two independent Poisson processes is not a Poisson

process.

^{17.} If the customers arrived at a counter in accordance with a Poisson process with a mean rate of 2 per minute, find the probability that the interval between two consecutive arrivals is more than one minute.

Sol: The interval T between 2 consecutive arrivals follows an exponential distribution with

parameter
$$\lambda = 2, P(T > 1) = \int_{1}^{\infty} 2e^{-2t} dt = e^{-2} = 0.135.$$

^{18.} A bank receives on an average $\lambda = 6$ bad checks per day, what are the probabilities that it will receive (i) 4 bad checks on any given day (ii) 10 bad checks over any 2 consecutive days.

Sol:
$$P(X(t) = n) = \frac{e^{-\lambda t} . (\lambda t)^n}{n!} = \frac{e^{-6t} (6t)^n}{n!}, n = 0, 1, 2...$$

(i) $P(X(1) = 4) = \frac{e^{-6} (6)^4}{4!} = 0.1338$
(ii) $P(X(2) = 10) = \frac{e^{-12} (12)^{10}}{10!} = 0.1048$

^{19.} Consider a Markov chain with two states and transition probability matr $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$. Find the stationary probabilities of the chain.

Sol:
$$(\pi_1, \pi_2) \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} = (\pi_1, \pi_2)$$
 $\pi_1 + \pi_2 = 1$
 $\frac{3}{4}\pi_1 + \frac{\pi_2}{4} = \pi_1 \Longrightarrow \frac{\pi_1}{4} - \frac{\pi_2}{2} = 0.$ $\therefore \pi_1 = 2\pi_2$
 $\therefore \pi_1 = \frac{2}{3}, \pi_2 = \frac{1}{3}.$

UNIT 4

Two marks

1. Define the ACF.

Answer:

Let $X(t_1)$ and $X(t_2)$ be two random variables. The autocorrelation of the random process $\{X(t)\}$ is

 $R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)].$

If $t_1 = t_2 = t$, $R_{XX}(t,t) = E[X^2(t)]$ is called as mean square value of the random process.

2. State any four properties of Autocorrelation function.

Answer:

1.
$$R_{XX}(-\tau) = R_{XX}(\tau)$$

2.
$$|R(\tau)| \leq R(0)$$

- 3. $R(\tau)$ is continuous for all τ .
- 4. If $R(\tau)$ is ACF of a stationary RP {X(t)} with no periodic components, then $\mu_X^2 = \lim_{\tau \to \infty} R(\tau)$.

3. Define the cross – correlation function.

Answer:

Let {X (t)} and {Y(t)} be two random processes. The cross-correlation is $R_{XY}(\tau) = E[X(t)Y(t-\tau)] .$

4. State any two properties of cross-correlation function.

1.
$$R_{YX}(-\tau) = R_{XY}(\tau)$$

2. $|R_{XY}(\tau)| \le \sqrt{R_{XX}(0)R_{YY}(0)} \le \frac{1}{2}[R_{XX}(0) + R_{YY}(0)]$

5. Given the ACF for a stationary process with no periodic component is $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$ find the mean and variance of the process {X(t)}

Answer:

By the property of ACF

$$\mu_x^2 = \lim_{\tau \to \infty} R_{XX}(\tau) = \lim_{\tau \to \infty} 25 + \frac{4}{1 + 6\tau^2} = 25$$

$$\mu_x = 5$$

$$E\{X^2(t)\} = R_{xx}(0) = 25 + 4 = 29$$

$$Var\{X(t)\} = E\{X^2(t)\} - E^2\{X(t)\} = 29 - 25 = 4.$$

6. ACF:
$$R_{XX}(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}$$
 find mean and variance.
7. ACF: $R_{XX}(\tau) = 25 + \frac{4}{1 + 6\tau^2}$ find mean and variance.

8. Define power spectral density.

Answer:

If $R_{XX}(\tau)$ is the ACF of a WSS process {X(t)} then the power spectral density $S_{XX}(\omega)$ of the process {X(t)}, is defined by

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i\omega\tau} d\tau \quad \text{(or)} \ S_{XX}(f) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i2\pi f\tau} d\tau$$

9. Express each of ACF and PSD of a stationary R.P in terms of the other.{(or) write down wiener khinchine relation } Answer:

 $R_{XX}(\tau)$ and $S_{XX}(\omega)$ are Fourier transform pairs.

i.e.,
$$S_{XY}(\omega) = \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-i\omega\tau} d\tau$$
 and $R_{xx}(\tau) = \int_{-\infty}^{\infty} S_{XY}(\omega) e^{i\omega\tau} d\tau$

10. Define cross power spectral density of two random process $\{X(t)\}$ and $\{Y(t)\}$. Answer:

If {X(t)} and {Y(t)} are jointly stationary random processes with cross correlation function $R_{XY}(\tau)$, then cross power spectral density of {X(t)} and {Y(t)} is defined by

$$S_{XY}(\omega) = \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-i\omega\tau} d\tau$$

11. State any two properties of power spectral density.

Answer:

- i) $S(\omega) = S(-\omega)$
- ii) $S(\omega) > 0$

iii) The spectral density of a process $\{X(t)\}$, real or complex, is a real function of ω and non-negative.

12. If $R(\tau) = e^{-2\lambda|\tau|}$ is the ACF of a R.P{X(t)}, obtain the spectral density.

Answer:

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i\omega\tau} d\tau = \int_{-\infty}^{\infty} e^{-2\lambda|\tau|} e^{-i\omega\tau} d\tau = 2 \int_{0}^{\infty} e^{-2\lambda\tau} \cos \omega\tau d\tau = \frac{4\lambda}{4\lambda^2 + \omega^2}.$$

13. State any four properties of cross power density spectrum. Answer:

- i) $S_{XY}(\omega) = S_{YX}(-\omega) = S^*_{YX}(\omega)$
- ii) Re[$S_{XY}(\omega)$] and Re[$S_{YX}(\omega)$] are even function of ω
- iii) Im[$S_{XY}(\omega)$] and Im[$S_{YX}(\omega)$] are odd function of ω
- iv) $S_{XY}(\omega) = 0$ and $S_{YX}(\omega) = 0$ if X(t) and Y(t) are orthogonal.

Unit 5

Two marks

14. Define a system and Define the linear system.

Answer:

A system is a functional relationship between the input X(t) and the output Y(t).i.e., Y(t) =f[X(t)], $-\infty < t < \infty$. A System is a functional relationship between the input X(t) and the output Y(t). If $f[a_1X_1(t)+a_2X_2(t)] = a_1 f[X_1(t)]+a_2 f[X_2(t)]$, then f is called a linear system.

15. Define time invariant system.

Answer:

If Y(t+h) = f[X(t+h)] where Y(t) = f[X(t)], then f is called the time invariant system.

16. Check whether the following system is linear .y(t)=t x(t) Answer:

Consider two input functions $x_1(t)$ and $x_2(t)$. The corresponding outputs are $y_1(t)=t x_1(t)$ and $y_2(t)=t x_2(t)$

Consider $y_3(t)$ as the linear combinations of the two inputs.

 $y_3(t) = t[a_1 x_1(t) + a_2 x_2(t)] = a_1 t x_1(t) + a_2 t x_2(t)$ (1)

consider the linear combinations of the two outputs.

 $a_1y(t)+a_2 y_2(t)=a_1t x_1(t)+a_2 t x_2(t)$ (2) From (1)and(2), (1)=(2)

The system y(t)=t x(t) is linear.

17.

Check whether the following system is linear $.y(t) = x^2(t)$ Answer: Consider two input functions $x_1(t)$ and $x_2(t)$. The corresponding outputs are $y_1(t)=x_1^2(t)$ and $y_2(t)=x_2^2(t)$ Consider $y_3(t)$ as the linear combinations of the two inputs. $y_3(t)=[a_1 x_1(t)+a_2 x_2(t)]^2=a_1^2 x_1^2(t)+a_2^2 x_2^2(t)+2 a_1 x_1(t)a_2 x_2(t) \dots (1)$ consider the linear combinations of the two outputs. $a_1y(t)+a_2 y_2(t)=a_1 x_1^2(t)+a_2 x_2^2(t) \dots (2)$ From (1) and (2), (1) \neq (2) The system $y(t)=x^2(t)$ is not linear.

18. Define the Linear Time Invariant System. Answer:

A linear system is said to be also time-invariant if the form of its impulse response h(t,u) does not depend on the time that the impulse is applied.

For linear time invariant system, h(t,u) = h(t-u)

If a system is such that its Input X(t) and its Output Y(t) are related by a Convolution integral,

i.e., if
$$Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du$$
, then the system is a

linear time-invariant system.

 Find the ACF of the random process {X(t)}, if its power spectral density is given by

$$S(\omega) = \begin{cases} 1 + \omega^2, & \text{for } |\omega| \le 1\\ 0, & \text{for } |\omega| > 1 \end{cases}$$

Solution:

$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega\tau} d\omega = \frac{1}{2\pi} \int_{-1}^{1} \{1 + \omega^2\} e^{i\omega\tau} d\omega = \frac{1}{2\pi} \int_{-1}^{1} \{e^{i\omega\tau} + \omega^2 e^{i\omega\tau}\} d\omega = \frac{1}{2\pi} \left\{ \left[\frac{e^{i\omega\tau}}{i\tau}\right]_{-1}^{1} + \int_{-1}^{1} \omega^2 \cos\omega\tau d\omega \right\} d\omega$$

$$= \frac{1}{2\pi} \left\{ \left[\frac{e^{i\omega\tau}}{i\tau} \right]^{1}_{-} + 2 \int_{0}^{1} \omega^{2} \cos \omega \tau \, d\omega \right\} = \frac{1}{2\pi} \left[\frac{e^{i\tau} - e^{-i\tau}}{i\tau} \right] + 2 \left[\omega^{2} \frac{\sin \omega \tau}{\tau} + \frac{2\omega \cos \omega \tau}{\tau^{2}} - \frac{2\sin \omega \tau}{\tau^{3}} \right]_{0}^{1}$$
$$= \frac{1}{2\pi} \left[\frac{2\sin \tau}{\tau} + \frac{2\sin \tau}{\tau} + \frac{4\cos \tau}{\tau^{2}} - \frac{4\sin \tau}{\tau^{3}} \right] = \frac{1}{2\pi} \left[\frac{2\tau^{2}\sin \tau + 2\tau^{2}\sin \tau + \tau 4\cos \tau - 4\sin \tau}{\tau^{3}} \right]$$
$$= \frac{2\{\tau^{2}\sin \tau + \tau\cos \tau - \sin \tau\}}{\pi\tau^{3}}$$

20. Define Average power.

Average power
$$=\frac{1}{2\pi}\int_{-\infty}^{\infty}S(\omega) d\omega = R(0)$$

21. A system has an impulse response $h(t) = e^{-\beta t}U(t)$, find the system transfer function.

Solution:

The unit Step Jundian
$$U(t) = \int_{1}^{0} f(t) dt$$

 $f(t) = \int_{e^{-\beta t}}^{0} f(t) e^{-\beta t} dt$
 $= \int_{e^{-\beta t}}^{\infty} e^{-\beta t} e^{-i\omega t} dt$
 $= \int_{e^{-\beta t}}^{\infty} e^{-\beta t} e^{-i\omega t} dt$
 $= \int_{e^{-(\beta + i\omega)t}}^{\infty} dt$
 $= \int_{e^{-(\beta + i\omega)t}}^{\infty} \int_{0}^{\infty} e^{-(\beta + i\omega)t} \int_{0}^{\infty} dt$
 $= -\frac{1}{\beta + i\omega} \int_{e^{-(\beta + i\omega)t}}^{\infty} \int_{0}^{\infty} dt$

22. State any properties of Linear time invariant system.

1. If X(t) is WSS process, then Y(t) is also WSS process.