

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade
Approved by AICTE, New Delhi & Affiliated to Anna University,
Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

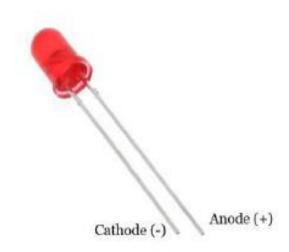
19ECT213- IOT SYSTEM ARCHITECTURE

II ECE / IV SEMESTER

UNIT 2 – MICROCONTROLLER AND INTERFACING TECHNIQUES FOR IoT

DEVICES

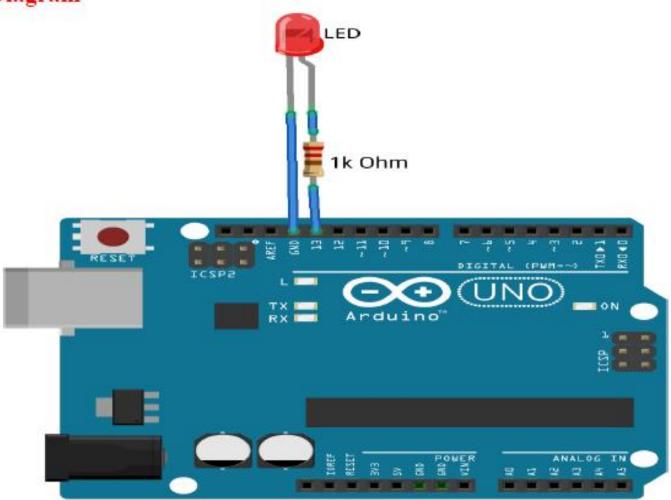
TOPIC 7 – Digital Sensor Interfacing


Interfacing programs on Arduino using LED

- 1. Blinking an LED
- 2. Toggle the state of LED using Switch
- 3. Traffic light simulation for pedestrians
- 4. Create Dimmable LED using Potentiometer

Blinking an LED

Components required

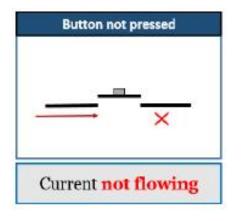

1-LED, 1-KΩ resistor, Jumper wires, Breadboard

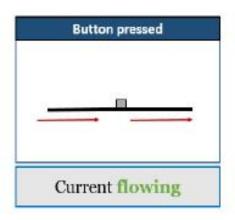
The longest lead is the anode and the shortest is the cathode.

Blinking an LED

Circuit Diagram

Blinking an LED

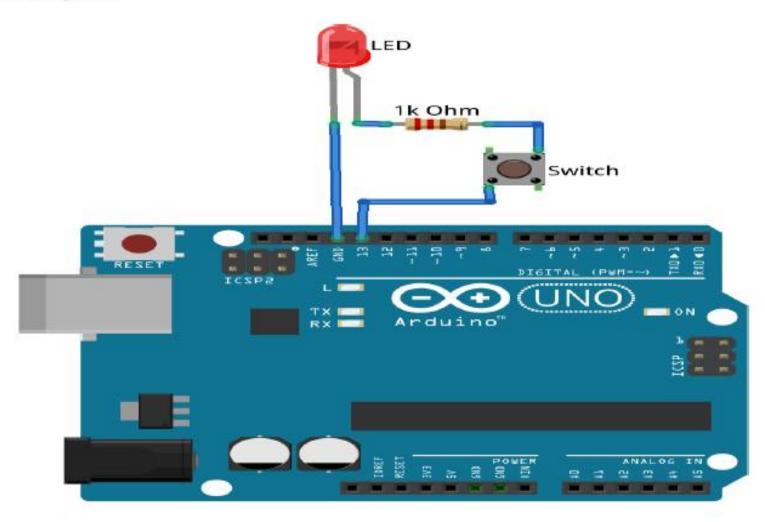

Code


```
/*The Function setup runs only once when Arduino board is first powered up
or a rest button the board is pressed */
void setup()
pinMode(13, OUTPUT); //pin 13 is set as an OUTPUT pin
//loop function iterates forever
void loop() {
digitalWrite(13, HIGH); //Sets LED to HIGH voltage
delay(1000); //delay by a second
digitalWrite(13, LOW); //Sets LED to LOW voltage
delay(1000); //delay by a second
```

Toggle the state of LED using Switch

Components required

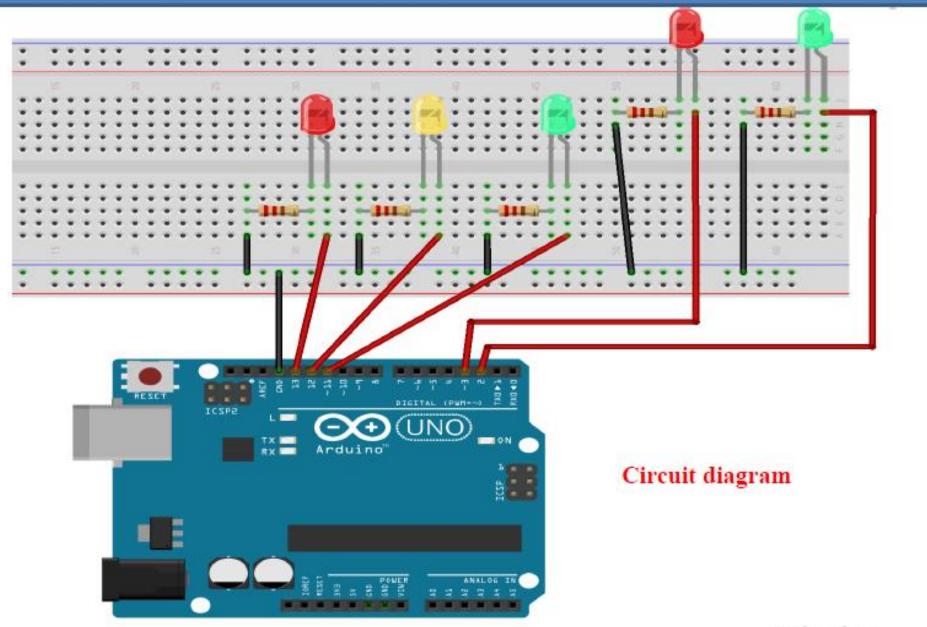
1-LED, 1-K Ω resistor, 1-push button, Jumper wires, Breadboard



Here an **open pushbutton** mechanism is used. In Normal state(not pushed) of the button current doesn't flow, only when button is pushed flow of current is allowed

Toggle the state of LED using Switch

Circuit diagram


Toggle the state of LED using Switch

Code

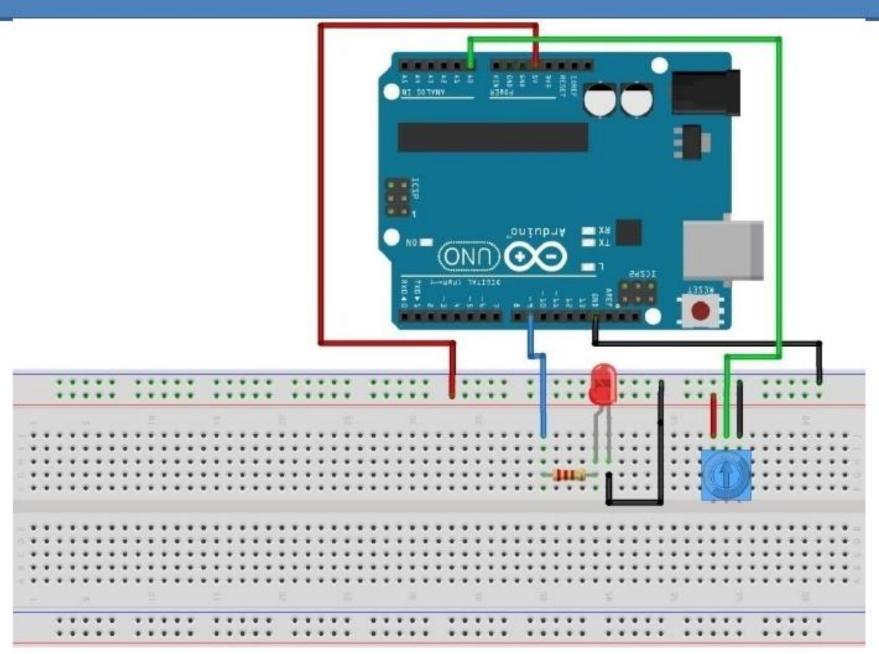
```
/*The Function setup runs only once when Arduino board is first
powered up or a rest button the board is pressed */
void setup()
pinMode(13, OUTPUT); //pin 13 is set as an OUTPUT pin
//loop function iterates forever
void loop()
digitalWrite(13, HIGH); //Sets LED to HIGH voltage when a button is
//pressed else it remains LOW
//delay by a second
delay(1000);
```

Components
required

2-Red LED, 2-Green LED, 1-Yellow LED, 5-220 Ω resistor, Jumper wires, Breadboard


```
Code
    // Declare the variables for different colors of LEDs.
    int red vehicle = 13;
    int yellow vehicle = 12;
    int green vehicle = 11;
    int green Pedestrian =2;
    int red Pedestrian= 3;
    void setup()
    // Initialize the pins for output
    pinMode(red vehicle, OUTPUT);
    pinMode(yellow vehicle, OUTPUT);
    pinMode(green vehicle, OUTPUT);
    pinMode(red Pedestrian, OUTPUT);
    pinMode(green Pedestrian, OUTPUT);
```

```
void loop()
digitalWrite(green Vehicle, HIGH); // green LED turns ON
digitalWrite(red Pedestrian, HIGH);
delay(5000);
digitalWrite(green Vehicle, LOW); // green LED turns OFF
digitalWrite(yellow Vehicle, HIGH); // Yellow LED turns ON for 2second.
delay(2000);
digitalWrite(yellow Vehicle, LOW); // yellow LED will turn OFF
digitalWrite(red Pedestrain, LOW);
digitalWrite(red Vehicle, HIGH); // Red LED turns ON for 5 seconds
digitalWrite (green Pedestrian, HIGH);
delay(5000);
digitalWrite(red Vehicle, LOW); // Red LED turns OFF
digitalWrite(green_Pedestrian, LOW);
```


Creating a Dimmable LED using Potentiometer

Components Required 1-LED, 220Ω resistor, 1-Potentiometer, Jumper wires, Breadboard

In this program we dim the LED based on the value read from the potentiometer. A "0" value from potentiometer is a "0V" and a value "1023" from potentiometer is a "5V", which means we need to write a value of 255. Hence we need to scale our read values from the potentiometer which falls between 0 to 1023 to suitable write values to be between 0 to 255 using the below given formulae.

write value=(255/1023)* read_value

Creating a Dimmable LED using Potentiometer

Creating a Dimmable LED using Potentiometer

```
//Declaring the pins corresponds to an LED-to pin 9 and a Potentiometer- to
//pinA0
int pot Pin= A0;
int LED Pin= 9;
int read Value; // To store the value read by potentiometer
int write Value; // To write the value to LED
void setup()
{ pinMode(pot Pin, INPUT);
 pinMode(LED Pin, OUTPUT);
 Serial.begin(9600); }
void loop()
{ read_Value = analogRead(pot_Pin); //Potentiometer reading
write Value = (255./1023.) * readValue; //Write value for LED is calculated
analogWrite(LEDPin, writeValue); //Write to the LED
Serial.print("The writing vlues to the LED is "); //Debugging purpose
Serial.println(write Value); }
```

Programs to interact with Serial Monitor of our Computer Screen

To print the status of our computer Screen

Now, let's introduce the interaction with the **Serial monitor**. In this program we perform Arithmetic operations on the variables defined in the program, variables are initialized inside the program. Serial monitor communication will be processed when we call the method **Serial.begin()** with appropriate **Baud rate**. Serial monitor displays the desired message of a program using the method **Serial.print()** method.

Syntax:

Serial.begin(speed) /* to communicate between your computer and Serial monitor */

Serial.begin(speed, config)

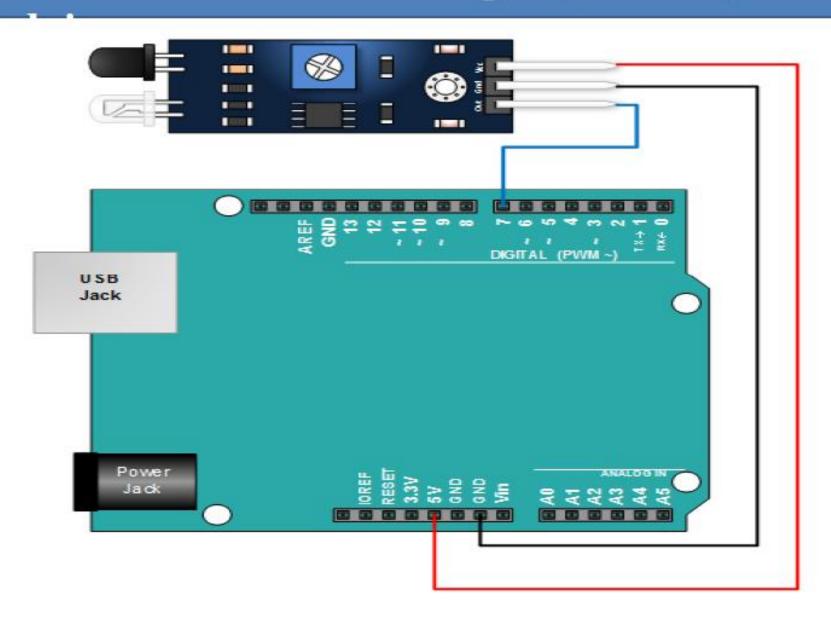
Serial.print() #To print desired message on the Serial monitor

Programs to interact with Serial Monitor of our Computer Screen

```
//In this program we compute basic aritmetic operations to print the result on
//to the Serial monitor.
int a = 5, b = 10, c = 20;
                          // run once, when the sketch starts
void setup()
{ Serial.begin(9600);
                             // set up Serial library at 9600 bps
 Serial.println("Here is some math: ");
 Serial.print("a = ");
 Serial.println(a);
 Serial.print("b = ");
 Serial.println(b);
 Serial.print("c = ");
 Serial.println(c);
```

Programs to interact with Serial Monitor of our Computer Screen

```
Serial.print("a + b = ");
                             // add
 Serial.println(a + b);
 Serial.print("a * c = ");
                              // multiply
 Serial.println(a * c);
 Serial.print("c / b = ");
                              // divide
 Serial.println(c / b);
 Serial.print("b - c = "); // subtract
 Serial.println(b - c);
void loop() { }
```


Interfacing Sensors to the Arduino

- Temperature Sensor
- Light Sensor
- Ultrasonic distance sensor
- Line sensor (infrared).

Required

Components 1-IR sensor, Jumper wire, Breadboard

An Infrared sensor is an electronic instrument which is used to sense certain characteristics of its surroundings by either emitting and/or detecting infrared radiation. Infrared sensors are also capable of measuring the heat being emitted by an object and detecting motion.


```
// IR Obstacle Collision Detection Module
int LED = 13;
int is Obstacle Pin = 7; // input pin for ostacle
int is Obstacle = HIGH; // value HIGH tells
there's no obstacle
void setup() {
 pinMode(LED, OUTPUT);
 pinMode(is_Obstacle_Pin, INPUT);
 Serial.begin(9600);
```

```
void loop() {
 is_Obstacle = digitalRead(is_Obstacle_Pin);
 if (is Obstacle == LOW)
  Serial.println("OBSTACLE!!,
OBSTACLE!!");
  digitalWrite(LED, HIGH);
 else
  Serial.println("clear");
  digitalWrite(LED, LOW);
 delay(200);
```

More Examples Refer Textbook

- ☐ Interfacing Display, GSM, GPS to Arduino
 - Temperature and LCD Display
 - Custom Characters in LCD
 - 7 Segment Display on Arduino
- ☐ GSM Interface
- ☐ GPS Interface
- ☐ Interfacing Motors
 - Servo motor

Review Questions

- How is Arduino Uno is different from the other available Microcontrollers?
- What is the use of GPIO pins?
- What is the use of I2C interfaces on Raspberry Pi?
- How many pins does the Atmega328P MCU used on the standard Arduino have? Over what range of voltages will it operate?
- Assume that you have an LED connected to each of the 14 digital-only I/O pins on the Arduino.
- If all of the LEDs could possibly be on at the same time, what must the current be limited to through each of the LEDs?
- Assume that a project requires that a high-brightness LED be on any time that the Arduino is powered-on, and that this LED requires 350mA. What is the best way to supply power/current to this LED?