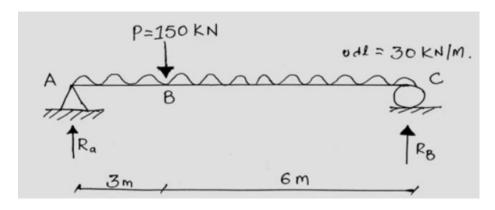


SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-641 035, TAMIL NADU

Castigliano's theorems and their applications



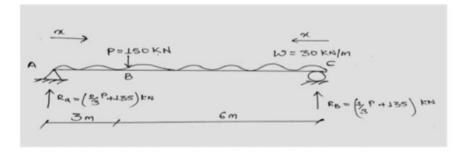
Determine the vertical deflection at point 150KN load in fig.

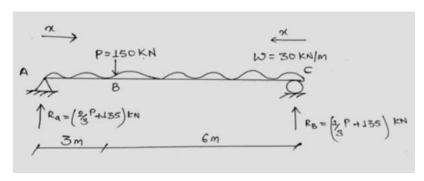
Take E: 232*10^6 KN/m^2 and I= 8.789*10^-4 m^4.

$$\Delta_B = \frac{1}{EI} \int_0^L M\left(\frac{\partial M}{\partial P}\right) dx$$

This is deflection formula for castigliano therorem. Hence, our main consideration is to calculate : M & $\frac{\partial M}{\partial P}$

$$\sum Mc = 0 \qquad \qquad \sum Ma = 0$$
 or, $9 \text{Ra} = 6 \text{P} + 30 * 9 * \frac{9}{2}$ or, $9 \text{Rc} = 3 \text{P} + 30 * 9 * \frac{9}{2}$ or, $\text{Rc} = \frac{2P}{3} + 135$ KN





Segment	Origin	limits	Moment	<u>8M</u>
AB	А	0 to 3m	2/2 Pax + 135 x - 30 x2	2 x
CB	c	0 40 6	13x+135x-30x2	13°

$$\Delta_{B} = \frac{1}{EI} \int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) dx$$

$$\Delta_B = \frac{1}{EI} \int_0^L M\left(\frac{\partial M}{\partial P}\right) dx$$
or,
$$\Delta_B = \frac{1}{EI} \left[\int_0^3 (\frac{2P}{3}x + 135x - 15x^2)(\frac{2}{3}x) dx + \int_0^6 (\frac{P}{3}x + 135x - 15x^2)(\frac{1}{3}x) dx \right]$$
substitute P=150KN and upon integration, we get :

 $\Delta_B = 0.01975 \text{m or } 19.75 \text{mm}$

i.e The point B deflects 19.75mm downward due to point load 150KN