UNIT - 1 STRESS, STRAIN DEFORMATION OF SOLIDS

VOLUMETRIC STRAIN OF A RECTANGULAR BODY SUBJJECTED TO AN AXIAL FORCE

Volumetric strain

volumetric strain,

$$
\begin{aligned}
\frac{\delta V}{V} & =\frac{V \times \frac{P}{b t E}\left(1-\frac{2}{m}\right)}{V}=\frac{P}{b t E}\left(1-\frac{2}{m}\right) \\
& =\varepsilon\left(1-\frac{2}{m}\right)
\end{aligned}
$$

$$
\ldots\left(\because \frac{P}{b t E}=\varepsilon=\text { Strain }\right)
$$

Note. The above formula holds good for compressive force also.
A steel bar 2 m long, 20 mm wide and 15 mm thick is subjected to a tensile load of 30 kN . Find the increase in volume, if Poisson's ratio is 0.25 and Young's modulus is 200 GPa.

Given Data: Length $(l)=2 \mathrm{~m}=2 \times 10^{3} \mathrm{~mm}$; Width $(b)=20 \mathrm{~mm}$; Thickness $(t)=15 \mathrm{~mm}$;
Tensile load $(P)=30 \mathrm{kN}=30 \times 103 \mathrm{~N}$; Poisson's ratio $1 / m=0.25$ or $m=4$ and Young's modulus of elasticity $(E)=200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$.

Let $\delta V=$ Increase in volume of the bar.
We know that original volume of the bar,
$V=l . b . t=(2 \times 103) \times 20 \times 15=600 \times 10^{3} \mathrm{~mm}^{3}$
and

$$
\frac{\delta V}{V}=\frac{P}{b t E}\left(1-\frac{2}{m}\right)=\frac{30 \times 10^{3}}{20 \times 15 \times\left(200 \times 10^{3}\right)}\left(1-\frac{2}{4}\right)=0.00025
$$

$\therefore \delta V=0.00025 \times V=0.00025 \times\left(600 \times 10^{3}\right)=150 \mathrm{~mm}^{3}$ Ans.
A copper bar 250 mm long and $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ in cross-section is subjected to an axial pull in the direction of its length. If the increase in volume of the bar is $37.5 \mathrm{~mm}^{3}$, find the magnitude of the pull. Take $m=4$ and $E=100$ GPa.

Given Data: Length $(l)=250 \mathrm{~mm}$; Width $(b)=50 \mathrm{~mm}$; Thickness $(t)=50 \mathrm{~mm}$; Increase in volume $(\delta V)=37.5 \mathrm{~mm} 3 ;(m)=4$ and modulus of elasticity $(E)=100 \mathrm{GPa}=100 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$.

Let $P=$ Magnitude of the pull in kN .

We know that
We know that original volume of the copper bar,

$$
V=\text { l.b.t }=(250 \times 50 \times 50)=625 \times 10^{3} \mathrm{~mm}^{3}
$$

and

$$
\begin{array}{rlrl}
& \frac{\delta V}{V} & =\frac{P}{b t E}\left(1-\frac{2}{m}\right)=\frac{P}{50 \times 10 \times\left(100 \times 10^{3}\right)}\left(1=\frac{2}{4}\right) \\
& \text { or } & \frac{37.5}{625 \times 10^{3}} & =\frac{P}{500 \times 10^{6}} \\
\therefore & P & =\frac{37.5 \times\left(500 \times 10^{6}\right)}{625 \times 10^{3}}=30 \times 10^{3} \mathrm{~N}=30 \mathrm{kN}
\end{array}
$$

Ans.
A steel bar $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ in cross-section is 1.2 m long. It is subjected to an axial pull of 200 kN . What are the changes in length, width and volume of the bar, if the value of Poisson's ratio is 0.3? Take E as 200 GPa.
Given Data: Width $(b)=50 \mathrm{~mm}$; Thickness $(t)=50 \mathrm{~mm}$; Length $(l)=1.2 \mathrm{~m}=1.2 \times 10^{3} \mathrm{~mm}$;
Axial pull $(P)=200 \mathrm{kN}=200 \times 10^{3} \mathrm{~N}$; Poisson's ratio $(1 / \mathrm{m})=0.3$ and
Modulus of elasticity $(E)=200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$.

Change in length

We know that change in length,

$$
\delta l=\frac{P l}{A E}=\frac{200 \times 10^{3} \times\left(1.2 \times 10^{3}\right)}{(50 \times 50) \times\left(200 \times 10^{3}\right)}=0.48 \mathrm{~mm} \quad \text { Ans }
$$

Change in width

We know that linear strain,
and lateral strain

$$
\begin{aligned}
\varepsilon & =\frac{\delta l}{l}=\frac{0.48}{1.2 \times 10^{3}}=0.0004 \\
& =\frac{1}{m} \times \varepsilon=0.3 \times 0.0004=0.00012
\end{aligned}
$$

$\therefore \quad$ Change in width, $\quad \delta b=b \times$ Lateral strain $=50 \times 0.00012=0.006 \mathrm{~mm} \quad$ Ans.

Change in volume

We also know that volume of the bar,

$$
V=\text { l.b.t }=\left(1.2 \times 10^{3}\right) \times 50 \times 50=3 \times 10^{6} \mathrm{~mm}^{3}
$$

and

$$
\begin{aligned}
\frac{\delta V}{V} & =\frac{P}{b t E}\left(1-\frac{2}{m}\right)=\frac{200 \times 10^{3}}{50 \times 50 \times\left(200 \times 10^{3}\right)}[1-(2 \times 0.3)] \\
& =0.000 \mathrm{16} \\
\therefore \quad \delta V & =0.00016 \mathrm{~V}=0.00016 \times\left(3 \times 10^{6}\right)=480 \mathrm{~mm}^{3} \quad \text { Ans. }
\end{aligned}
$$

VOLUMETRIC STRAIN OF A RECTANGULAR BODY SUB.JECTED TO THREE MUTUALLY PERPENDICULAR FORCES

Consider a rectangular body subjected to direct tensile stresses along three mutually perpendicular axes as shown in Figure.

Volumetric strain

Let
$\sigma_{x}=$ Stress in $x-x$ direction,
$\sigma_{y}=$ Stress in $y-y$ direction,
$\sigma_{z}=$ Stress in $z-z$ direction and
$E=$ Young's modulus of elasticity.
$\therefore \quad$ Strain in x - x direction due to stress σ_{x},

$$
\varepsilon_{x}=\frac{\sigma_{x}}{E}
$$

Similarly,

$$
\varepsilon_{y}=\frac{\sigma_{y}}{E} \quad \text { and } \quad \varepsilon_{z}=\frac{\sigma_{z}}{E}
$$

The resulting strains in the three directions, may be found out by the principle of superposition, i.e., by adding algebraically, the strains in each direction due to each individual stress. For the three tensile stresses shown in above Figure. (Taking tensile strains as +ve and compressive strains as -ve) the resultant strain in x - x direction,

Similarly,

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\sigma_{x}}{E}-\frac{\sigma_{y}}{m E}-\frac{\sigma_{z}}{m E}=\frac{1}{E}\left[\sigma_{x}-\frac{\sigma_{y}}{m}-\frac{\sigma_{z}}{m}\right] \\
& \varepsilon_{y}=\frac{\sigma_{y}}{E}-\frac{\sigma_{x}}{m E}-\frac{\sigma_{z}}{m E}=\frac{1}{E}\left[\sigma_{y}-\frac{\sigma_{x}}{m}-\frac{\sigma_{z}}{m}\right] \\
& \varepsilon_{z}=\frac{\sigma_{z}}{E}-\frac{\sigma_{x}}{m E}-\frac{\sigma_{y}}{m E}=\frac{1}{E}\left[\sigma_{z}-\frac{\sigma_{x}}{m}-\frac{\sigma_{y}}{m}\right]
\end{aligned}
$$

The volumetric strain may then be found by the relation;

$$
\frac{\delta V}{V}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}
$$

NOTE. In the above relation, the values of $\varepsilon x, \varepsilon y$ and εz should be taken tensile as positive and compressive as negative.
A rectangular bar 500 mm long and $100 \mathrm{~mm} \times 50 \mathrm{~mm}$ in cross-section is subjected to forces as shown in Figure. What is the change in the volume of the bar? Take modulus of elasticity for the bar material as 200 GPa and Poisson's ratio as 0.25 .

Given Data: Length $(l)=500 \mathrm{~mm}$; Width $(b)=100 \mathrm{~mm}$; Thickness $(t)=50 \mathrm{~mm}$;
Force in x-direction $\left(P_{x}\right)=100 \mathrm{kN}=100 \times 10^{3} \mathrm{~N}$ (Tension);
Force in y-direction $\left(P_{y}\right)=200 \mathrm{kN}=200 \times 10^{3} \mathrm{~N}$ (Tension);
Force in z-direction $\left(P_{z}\right)=300 \mathrm{kN}=300 \times 10^{3} \mathrm{~N}$ (Compression);
Modulus of elasticity $(E)=200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ and
Poisson's ratio $(1 / m)=0.25$ or $m=4$.
Let $\delta V=$ Change in the volume of the bar.
We know that original volume of the rectangular bar,

$$
V=l \times b \times t=500 \times 100 \times 50=2.5 \times 106 \mathrm{~mm} 3 \text { and stress in } x-x \text { direction, }
$$

Similarly,

$$
\begin{aligned}
& \sigma_{x}=\frac{P_{x}}{A_{x}}=\frac{100 \times 10^{3}}{100 \times 50}=20 \mathrm{~N} / \mathrm{mm}^{2} \text { (Tension) } \\
& \sigma_{y}=\frac{P_{y}}{A_{y}}=\frac{200 \times 10^{3}}{500 \times 50}=8 \mathrm{~N} / \mathrm{mm}^{3} \text { (Tension) } \\
& \sigma_{z}=\frac{P_{z}}{A_{z}}=\frac{300 \times 10^{3}}{500 \times 100}=6 \mathrm{~N} / \mathrm{mm}^{2} \text { (Compression) }
\end{aligned}
$$

and
We also know that resultant strain in x - x direction considering tension as positive and compression as negative

Similarly

$$
\begin{aligned}
& \varepsilon_{x}=+\frac{\sigma_{x}}{E}-\frac{\sigma_{y}}{m E}+\frac{\sigma_{z}}{m E}=+\frac{20}{E}-\frac{8}{4 E}+\frac{6}{4 E}=\frac{19.5}{E} \\
& \varepsilon_{y}=+\frac{\sigma_{y}}{E}-\frac{\sigma_{x}}{m E}+\frac{\sigma_{z}}{m E}=+\frac{8}{E}-\frac{20}{4 E}+\frac{6}{4 E}=\frac{4.5}{E} \\
& \varepsilon_{z}=-\frac{\sigma_{z}}{E}-\frac{\sigma_{x}}{m E}-\frac{\sigma_{y}}{m E}=-\frac{6}{E}-\frac{20}{4 E}-\frac{8}{4 E}=-\frac{13}{E}
\end{aligned}
$$

and
We also know that volumetric strain,

$$
\begin{aligned}
\frac{\delta V}{V} & =\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} \\
\frac{\delta V}{2.5 \times 10^{6}} & =\frac{19.5}{E}+\frac{4.5}{E}-\frac{13}{E}=\frac{11}{E}=\frac{11}{200 \times 10^{3}}=0.055 \times 10^{-3} \\
\therefore V & =\left(0.055 \times 10^{-3}\right) \times\left(2.5 \times 10^{6}\right)=137.5 \mathrm{~mm}^{3} \quad \text { Ans. }
\end{aligned}
$$

A steel cube block of 50 mm side is subjected to a force of 6 kN (Tension), 8 kN (Compression) and $4 k N$ (Tension) along x, y and z direction respectively. Determine the change in volume of the block. Take E as 200 GPa and m as 10/3.

Given Data: Side of the cube $=50 \mathrm{~mm}$; Force in x direction
$\left(P_{x}\right)=6 \mathrm{kN}=6 \times 10^{3} \mathrm{~N}$ (Tension); Force in y-direction
$\left(P_{y}\right)=8 \mathrm{kN}=8 \times 10^{3} \mathrm{~N}$ (Compression); Force in z-direction
$\left(P_{z}\right)=4 \mathrm{kN}=4 \times 10^{3} \mathrm{~N}$ (Tension) and
Modulus of elasticity $(E)=200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ and $m=10 / 3$

Let

$$
\begin{aligned}
& \delta V= \text { Change in volume of the } \\
& \text { block. }
\end{aligned}
$$

We know that original volume of the steel cube,

$$
V=50 \times 50 \times 50=125 \times 10^{3} \mathrm{~mm}^{3}
$$

and stress in $x-x$ direction,

Similarly

$$
\begin{aligned}
& \sigma_{x}=\frac{P_{x}}{A}=\frac{6 \times 10^{3}}{2500}=2.4 \mathrm{~N} / \mathrm{mm}^{2}(\text { Tension }) \\
& \sigma_{y}=\frac{P_{y}}{A}=\frac{8 \times 10^{3}}{2500}=3.2 \mathrm{~N} / \mathrm{mm}^{2}(\text { Compression }) \\
& \sigma_{z}=\frac{P_{z}}{A}=\frac{4 \times 10^{3}}{2500}=1.6 \mathrm{~N} / \mathrm{mm}^{2}(\text { Tension })
\end{aligned}
$$

We also know that resultant strain in x - x direction considering tension as positive and compression as negative,

Similarly,

$$
\varepsilon_{x}=\frac{\sigma_{x}}{E}+\frac{\sigma_{y}}{m E}-\frac{\sigma_{z}}{m E}=\frac{2.4}{E}+\frac{3.2 \times 3}{10 E}-\frac{1.6 \times 3}{10 E}=\frac{2.88}{E}
$$

$$
\varepsilon_{y}=-\frac{\sigma_{y}}{E}-\frac{\sigma_{x}}{m E}-\frac{\sigma_{z}}{m E}=-\frac{3.2}{E}-\frac{2.4 \times 3}{10 E}-\frac{1.6 \times 3}{10 E}=-\frac{4.4}{E}
$$

and

$$
\varepsilon_{z}=\frac{\sigma_{z}}{E}-\frac{\sigma_{x}}{m E}+\frac{\sigma_{y}}{m E}=\frac{1.6}{E}-\frac{2.4 \times 3}{10 E}+\frac{3.2 \times 3}{10 E}=\frac{1.84}{E}
$$

We also know that volumetric strain,

$$
\begin{aligned}
\frac{\delta V}{V} & =\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} \\
\frac{\delta V}{125 \times 10^{3}} & =\frac{2.88}{E}-\frac{4.4}{E}+\frac{1.84}{E}=\frac{0.32}{E}=\frac{0.32}{200 \times 10^{3}} \\
\therefore \quad \delta V & =125 \times 10^{3} \times \frac{0.32}{200 \times 10^{3}}=0.2 \mathrm{~mm}^{3}
\end{aligned}
$$

Ans.

EXERCISE

1. A steel bar 1.2 m long, 50 mm wide and 40 mm thick is subjected to an axial pull of 150 kN in the direction of its length. Determine the change in volume of the bar. Take $E=200$ GPa and $\mathrm{m}=4$. [Ans. 450 mm 3]
2. A steel block $200 \mathrm{~mm} \times 20 \mathrm{~mm} \times 20 \mathrm{~mm}$ is subjected to a tensile load of 40 kN in the direction of its length. Determine the change in volume, if E is 205 GPa and $1 / \mathrm{m}=0.3$.
[Ans. 15.6 mm 3]
