

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING VQAR -VERBAL QUANTITATIVE APTITUDE REASONING-II

UNIT 2-QUANTITATIVE ABILITY IV

TOPIC **3: MENSURATION**

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

12/2/2

The part of geometry concerned with ascertaining lengths, areas, and volumes.

20.02.2023

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

MENSURATION						
SOLID	FIGURE	LATERAL /CURVED SURFACE AREA	TOTAL SURFACE	VOLUME		
CUBOID		2 (l+b)h	2 (16+6n+h2)	Lbh		
CUBE		4 l ²	62 ²	l ³		
RIGHT CIRCULAR CYLINDER		27 Jh	2 त.अ (अ+h)	え sy ² h		
RIGHT CIRCULAR CONE	A	$A \rightarrow l$ $l = \int \partial t^2 + h^2$ where $l = slant$ height	Ллl + Лл ² or Лл (l+л)	$\frac{1}{3}$ π ot ² h		
SPHERE	\bigcirc	47.01 ²	4⊼31 ²	4 701 ²		
HEMISPHERE	0	2⊼J ²	37.07 ²	2 Rol ³		
HOLLOW		27 (Rton)h cohemeR= external oradius and M= internal radius	25 (R+3)h+25(R2-37)	⊼ (R ² -31 ²)h		
FRUSTUM OF RIGHT CIRCULAR CONE	A	$\pi (R+3) l$ where $R \not s \not s$ are stadii of base and $R > 31$ $l = \sqrt{h^2 + (R-31)^2}$	え L (R+31) + スR ² + えい ²	17h [R ² +32+R3]		

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

	Mensuration Formulas				
Perimeter		Surfac			
Square	P = 4s	Cube			
Rectangle	P = 2(l+w)	Cylinder			
Circumforonco		Cone			
Circle	$C = 2\pi r$	Sphere			
Area		Vol			
Square	$A = s^2$	Cube			
Rectangle	A = hw	Cylinder			
Triangle	$A = \frac{1}{2}bh$	Cone			
Trapezoid	$A = \frac{1}{2} (b_1 + b_2) h$	Sphere			
Circle	$A = \pi r^2$				

20.02.2023

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

$$SA = 6s^{2}$$

$$SA = 2\pi rh + 2\pi r^{2}$$

$$SA = \pi rl$$

$$SA = 4\pi r^{2}$$

lume

$$V = s^{3}$$

$$V = \pi r^{2}h$$

$$V = \frac{1}{3}\pi r^{2}h$$

$$V = \frac{4}{3}\pi r^{3}$$

A right triangle with sides 3 cm, 4 cm and 5 cm is rotated the side of 3 cm to form a cone. The volume of the cone so formed is:

Explanation:

Clearly, we have r = 3 cm and h = 4 cm.

$$\therefore \text{ Volume} = \frac{1}{3}\pi r^2 h = \left(\frac{1}{3} \times \pi \times 3^2 \times 4\right) \text{cm}^3 = 12\pi \text{ cm}^3.$$

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

In a shower, 5 cm of rain falls. The volume of water that falls on 1.5 hectares of ground is:

Explanation:

1 hectare = $10,000 \text{ m}^2$

So, Area = $(1.5 \times 10000) \text{ m}^2 = 15000 \text{ m}^2$.

Depth =
$$\frac{5}{100}$$
m = $\frac{1}{20}$ m.
 \therefore Volume = (Area x Depth) = $\left(15000 \times \frac{1}{20}\right)$ m³ = 750 m³.

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

A hall is 15 m long and 12 m broad. If the sum of the areas of the floor and the ceiling is equal to the sum of the areas of four walls, the volume of the hall is:

Explanation:

 $2(15 + 12) \times h = 2(15 \times 12)$

$$\Rightarrow h = \frac{180}{27} \text{m} = \frac{20}{3} \text{m}.$$

$$\therefore \text{ Volume} = \left(15 \text{ x } 12 \text{ x } \frac{20}{3}\right) \text{m}^3 = 1200 \text{ m}^3.$$

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

A hollow iron pipe is 21 cm long and its external diameter is 8 cm. If the thickness of the pipe is 1 cm and iron weighs 8 g/cm³, then the weight of the pipe is:

Explanation:

External radius = 4 cm,

Internal radius = 3 cm.

Volume of iron =
$$\left(\frac{22}{7} \times [(4)^2 - (3)^2] \times 21\right) \text{cm}^3$$

= $\left(\frac{22}{7} \times 7 \times 1 \times 21\right) \text{cm}^3$
= 462 cm³

Weight of iron = (462 x 8) gm = 3696 gm = 3.696 kg.

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

A boat having a length 3 m and breadth 2 m is floating on a lake. The boat sinks by 1 cm when a man gets on it. The mass of the man is:

Explanation:

Volume of water displaced = $(3 \times 2 \times 0.01)$ m³ $= 0.06 \text{ m}^3$.

Mass of man = Volume of water displaced x Density of water

= (0.06 x 1000) kg

= 60 kg.

A cistern 6m long and 4 m wide contains water up to a depth of 1 m 25 cm. The total area of the wet surface is:

Explanation:

Area of the wet surface = [2(lb + bh + lh) - lb]= 2(bh + lh) + lb $= [2 (4 \times 1.25 + 6 \times 1.25) + 6 \times 4] \text{ m}^2$ $= 49 \text{ m}^2$.

A metallic sheet is of rectangular shape with dimensions 48 m x 36 m. From each of its corners, a square is cut off so as to make an open box. If the length of the square is 8 m, the volume of the box (in m^3) is:

Explanation:

Clearly, / = (48 - 16)m = 32 m,

b = (36 - 16)m = 20 m,

 $h = 8 \, \text{m}.$

... Volume of the box = $(32 \times 20 \times 8) \text{ m}^3 = 5120 \text{ m}^3$.

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

A cistern of capacity 8000 litres measures externally 3.3 m by 2.6 m by 1.1 m and its walls are 5 cm thick. The thickness of the bottom is:

Explanation:

Let the thickness of the bottom be x cm.

Then, $[(330 - 10) \times (260 - 10) \times (110 - x)] = 8000 \times 1000$

 \Rightarrow 320 x 250 x (110 - x) = 8000 x 1000

$$\Rightarrow (110 - x) = \frac{8000 \times 1000}{320 \times 250} = 100$$

 $\Rightarrow x = 10 \text{ cm} = 1 \text{ dm}.$

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

20.02.2023

A large cube is formed from the material obtained by melting three smaller cubes of 3, 4 and 5 cm side. What is the ratio of the total surface areas of the smaller cubes and the large cube?

Explanation:

Volume of the large cube = $(3^3 + 4^3 + 5^3) = 216 \text{ cm}^3$.

Let the edge of the large cube be a.

So, $a^3 = 216 \implies a = 6$ cm.

$$\therefore \text{ Required ratio} = \left(\frac{6 \times (3^2 + 4^2 + 5^2)}{6 \times 6^2}\right) = \frac{50}{36} = 25 : 18.$$

How many bricks, each measuring 25 cm x 11.25 cm x 6 cm, will be needed to build a wall of 8 m x 6 m x 22.5 cm?

Explanation:

Number of bricks –	Volume of the wall	
Number of blicks -	Volume of 1 brick	

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

20.02.2023

$\left(\frac{800 \text{ x } 600 \text{ x } 22.5}{25 \text{ x } 11.25 \text{ x } 6}\right)$ = 6400.

THANK YOU

20.02.2023

MENSURATION–UNIT 2 /VERBAL QUANTATIVE APPTITUDE AND RESONING II /RAMYA E/ECE/SNSCT

