SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS \mathcal{E} COMMUNICATION ENGINEERING VQAR -VERBAL QUANTITATIVE APTITUDE REASONING-II

UNIT 2-QUANTITATIVE ABILITY IV

TOPIC 3: MENSURATION

MENSURATION

The part of geometry concerned with ascertaining lengths, areas, and volumes.

MENSURATION

Mensuration				
SOL10	FIGURE	Lateral / Curved SURFACE AREA	TOTAL SURFACE AREA	VOLUME
CuBOID		$z(l+b) h$	$2(2 b+b h+h l)$	ebh
CUBE		$4 e^{2}$	$6 e^{2}$	e^{3}
RxGHT CIRCULAR CYLINDER		2π rh	$2 \pi r(r+h)$	$\pi r^{2} h$
Right circular CONE		$\begin{aligned} & \pi r l \\ & l=\sqrt{r^{2}+h^{2}} \end{aligned}$ where $l=$ siant height	$\begin{aligned} & \pi r l+\pi r^{2} \\ & \text { or } \\ & \pi r(l+r) \end{aligned}$	$\frac{1}{3} \pi \pi^{2} h$
SPHERE		$4 \pi v^{2}$	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{2}$
HEMISPHERE		$2 \pi r^{2}$	$3 \pi r^{2}$	$\frac{2}{3} \pi r^{3}$
HOLLOW CYIINDER		$\begin{aligned} & 2 \pi(R+\text { on }) h \\ & \text { wher } R=\text { external } \\ & \text { radius and } r= \\ & \text { internal radius } \end{aligned}$	$2 \pi(R+r i) h+2 \pi\left(R^{2}-r^{2}\right)$	$\pi\left(R^{2}-r^{2}\right) h$
FRUSTUM of RIGTHT cIRCULAR CONE		$\pi(R+r) \ell$ where R \& r are radii of base and $R>r$ $l=\sqrt{h^{2}+(R-r)^{2}}$	$\bar{\pi} \ell(R+r)+\pi R^{2}+\pi r^{2}$	$\frac{1}{3} \pi h\left[R^{2}+r^{2}+R r\right]$

Mensuration Formulas

Mensuration Formulas			
Perimeter		Surface Area	
Square	$P=4 s$	Cube	$S A=6 s^{2}$
Rectangle	$P=2(l+w)$	Cylinder	$S A=2 \pi r \cdot h+2 \pi r^{2}$
Circumference		Cone	$S A=\pi r l$
Circle	$C=2 \pi r$	Sphere	$S A=4 \pi r^{2}$
Area		Volume	
Square	$A=s^{2}$	Cube	$V=s^{3}$
Rectangle	$A=l w$	Cylinder	$V=\pi r^{2} h$
Triangle	$A=\frac{1}{2} b h$	Cone	$V=\frac{1}{3} \pi r^{2} h$
Trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$	Sphere	$V=\frac{4}{3} \pi r^{3}$
Circle	$A=\pi r^{2}$		

MENSURATION

A right triangle with sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm is rotated the side of 3 cm to form a cone. The volume of the cone so formed is:

Explanation:

Clearly, we have $r=3 \mathrm{~cm}$ and $h=4 \mathrm{~cm}$.
\therefore Volume $=\frac{1}{3} \pi r^{2} h=\left(\frac{1}{3} \times \pi \times 3^{2} \times 4\right) \mathrm{cm}^{3}=12 \pi \mathrm{~cm}^{3}$.

MENSURATION

In a shower, 5 cm of rain falls. The volume of water that falls on 1.5 hectares of ground is:

Explanation:
1 hectare $=10,000 \mathrm{~m}^{2}$
So, Area $=(1.5 \times 10000) \mathrm{m}^{2}=15000 \mathrm{~m}^{2}$.
Depth $=\frac{5}{100} m=\frac{1}{20} m$.
\therefore Volume $=($ Area \times Depth $)=\left(15000 \times \frac{1}{20}\right) \mathrm{m}^{3}=750 \mathrm{~m}^{3}$.

MENSURATION

A hall is 15 m long and 12 m broad. If the sum of the areas of the floor and the ceiling is equal to the sum of the areas of four walls, the volume of the hall is:

Explanation:

$$
\begin{aligned}
& 2(15+12) \times h=2(15 \times 12) \\
& \Rightarrow h=\frac{180}{27} \mathrm{~m}=\frac{20}{3} \mathrm{~m} . \\
& \therefore \text { Volume }=\left(15 \times 12 \times \frac{20}{3}\right) \mathrm{m}^{3}=1200 \mathrm{~m}^{3} .
\end{aligned}
$$

MENSURATION

A hollow iron pipe is 21 cm long and its external diameter is 8 cm . If the thickness of the pipe is 1 cm and iron weighs $8 \mathrm{~g} / \mathrm{cm}^{3}$, then the weight of the pipe is:

```
Explanation:
External radius = 4cm,
Internal radius = 3 cm.
Volume of iron =(\frac{22}{7}\times[(4\mp@subsup{)}{}{2}-(3\mp@subsup{)}{}{2}]\times21)\mp@subsup{\textrm{cm}}{}{3}
    =(\frac{22}{7}\times7\times1\times21)\mp@subsup{\textrm{cm}}{}{3}
    =462 cm
```

\therefore Weight of iron $=(462 \times 8) \mathrm{gm}=3696 \mathrm{gm}=3.696 \mathrm{~kg}$.

MENSURATION

A boat having a length 3 m and breadth 2 m is floating on a lake. The boat sinks by 1 cm when a man gets on it. The mass of the man is:

Explanation:

Volume of water displaced $=(3 \times 2 \times 0.01) \mathrm{m}^{3}$

$$
=0.06 \mathrm{~m}^{3} \text {. }
$$

\therefore Mass of man $=$ Volume of water displaced x Density of water

$$
\begin{aligned}
& =(0.06 \times 1000) \mathrm{kg} \\
& =60 \mathrm{~kg} .
\end{aligned}
$$

MENSURATION

A cistern 6 m long and 4 m wide contains water up to a depth of 1 m 25 cm . The total area of the wet surface is:

Explanation:

$$
\begin{aligned}
\text { Area of the wet surface } & =[2(l b+b h+l h)-l b] \\
& =2(b h+l h)+l b \\
& =[2(4 \times 1.25+6 \times 1.25)+6 \times 4] \mathrm{m}^{2} \\
& =49 \mathrm{~m}^{2} .
\end{aligned}
$$

MENSURATION

A metallic sheet is of rectangular shape with dimensions 48 mx 36 m . From each of its corners, a square is cut off so as to make an open box. If the length of the square is 8 m , the volume of the box (in m^{3}) is:

```
Explanation:
Clearly, }I=(48-16)\textrm{m}=32\textrm{m}
b = (36-16)m=20 m,
h=8m
\thereforeVolume of the box = (32 < 20 x 8) m}\mp@subsup{\textrm{m}}{}{3}=5120\mp@subsup{\textrm{m}}{}{3}\mathrm{ .
```


MENSURATION

A cistern of capacity 8000 litres measures externally 3.3 m by 2.6 m by 1.1 m and its walls are 5 cm thick. The thickness of the bottom is:

```
Explanation:
Let the thickness of the bottom be \(x \mathrm{~cm}\).
Then, \([(330-10) \times(260-10) \times(110-x)]=8000 \times 1000\)
\(\Rightarrow 320 \times 250 \times(110-x)=8000 \times 1000\)
\(\Rightarrow(110-x)=\frac{8000 \times 1000}{320 \times 250}=100\)
\(\Rightarrow x=10 \mathrm{~cm}=1 \mathrm{dm}\).
```


MENSURATION

A large cube is formed from the material obtained by melting three smaller cubes of 3,4 and 5 cm side. What is the ratio of the total surface areas of the smaller cubes and the large cube?

Explanation:

Volume of the large cube $=\left(3^{3}+4^{3}+5^{3}\right)=216 \mathrm{~cm}^{3}$.
Let the edge of the large cube be a.
So, $a^{3}=216 \Rightarrow a=6 \mathrm{~cm}$.
\therefore Required ratio $=\left(\frac{6 \times\left(3^{2}+4^{2}+5^{2}\right)}{6 \times 6^{2}}\right)=\frac{50}{36}=25: 18$.

MENSURATION

How many bricks, each measuring $25 \mathrm{~cm} \times 11.25 \mathrm{~cm} \times 6 \mathrm{~cm}$, will be needed to build a wall of $8 \mathrm{mx} 6 \mathrm{~m} \times 22.5 \mathrm{~cm}$?

Explanation:

Number of bricks $=\frac{\text { Volume of the wall }}{\text { Volume of } 1 \text { brick }}=\left(\frac{800 \times 600 \times 22.5}{25 \times 11.25 \times 6}\right)=6400$.

THANK YOU

