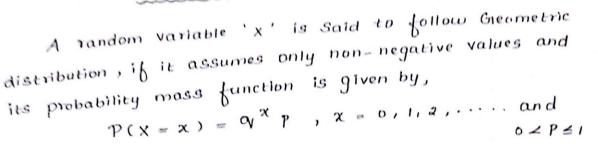


(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

GEOMETRIC DISTRIBUTIONS

(18)



where q = 1 - pNote: Why it is called a geometric distribution? 1. (putting $\chi = 0, 1, 2, 3, \dots$ we get $q^{\circ}p, qp, q^{2}p, q^{3}p$ which are the various terms of geometric Progression. Hence it is known as Greometric distribution 2. We can also take the probability mass function

$$a_{x}$$
,
 $p(x = x) = q^{x-1}p$, $x = 1, 2, ..., \& o$

where or = 1-p.

Mean and Variance:

Mean =
$$\mu'_{i} = E(x)$$

= $\sum_{X=0}^{\infty} x p(x)$
= $\sum_{X=0}^{\infty} x \cdot q^{X} p$
= $\sum_{X=0}^{\infty} x \cdot q^{X} p \cdot q \cdot \frac{1}{q} (x & x \div by q)$
 $x=0$

16MA301- PROBABILITY AND QUEUEING THEORY

Page 1 OF 6

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

 $\mu_{a}^{\prime} = a p q^{2} \left[\frac{x}{x-a} \frac{\chi(\chi-1) q^{\chi-a}}{a} \right] + \frac{q}{p}$ $= 2pq^{2} \int \frac{2(2-1)q^{2}}{2} + \frac{3(3-1)q^{3-2}}{2} + \frac{3(3-1)q^$ $\frac{4(4-1)q^{4-2}}{p} + \cdots \int \frac{q}{p}$ $= 2pq^{2} \left[1 + 3q + 6q^{2} + \dots \right] + \frac{q}{p}$ $= 2pq^{2}(1-qr)^{-3} + \frac{qr}{p} \qquad [\cdot:(1-zr)^{-3} = \frac{1+3z+bz^{2}+\cdots]}{1+3z+bz^{2}+\cdots]}$ $= \lambda p q^{2} (p + q - q)^{-3} + \frac{q}{p}$ $= 2pq^2p^{-3} + \frac{q}{p}$ $\mu_{a}^{\prime} = \frac{2 q^{2}}{p^{2}} + \frac{q}{p}$ Variance = $\mu_2' - \mu_1'^2$ $= \frac{2q^2}{p^2} + \frac{q}{p} - \left(\frac{q}{p}\right)^2$ $= \frac{2q^2}{p^2} + \frac{q}{p} - \frac{q^2}{p^2}$ $= \frac{q^2}{p^2} + \frac{q}{p}$ $= \frac{q^2 + pq}{p^2} = \frac{q^2 (p+q^2)}{p^2} = \frac{q^2}{p^2}$

16MA301- PROBABILITY AND QUEUEING THEORY

Variance = $\frac{q_1}{p_1^2}$

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Moment Generating function:

$$M_{x}(t) = E(e^{tx})$$

$$= \frac{\infty}{2} e^{tx} P(x)$$

$$= \frac{\infty}{2} e^{tx} q^{x} p$$

$$= \frac{\infty}{2} e^{tx} q^{x} p$$

$$= \frac{\infty}{2} e^{tx} q^{x} p$$

$$= \frac{\infty}{2} e^{tx} q^{x}$$

$$= \frac{\infty}{2} e^{tx} q^{x}$$

$$= \frac{\infty}{2} e^{tx} q^{x}$$

$$= \frac{1}{2} e^{tx} q^{x}$$

$$= \frac{1}{2} e^{tx} q^{x}$$

$$= \frac{1}{2} e^{tx} q^{x}$$

$$= \frac{1}{2} (1 - qe^{t})^{-1} \qquad (1 - qe^{t})^{-2} e^{t}$$

$$= \frac{1}{2} e^{tx} q^{x}$$

$$= \frac{1}{2} e^{tx} q^{x}$$

$$= \frac{1}{2} (1 - qe^{t})^{-1} \qquad (1 - qe^{t})^{-2} e^{t}$$

$$= \frac{1}{2} e^{tx} q^{x}$$

$$= \frac{1}{2} e^{tx} q^{x}$$

$$= \frac{1}{2} (1 - qe^{t})^{-1} \qquad (1 - qe^{t})^{-1}$$

$$= \frac{1}{2} (1 - qe^{t})^{-1} \qquad (1 - qe^{t})^{-1} \qquad (1 - qe^{t})^{-1} = 1 + x + x^{2} + \frac{1}{2}$$

$$= \frac{1}{2} (1 - qe^{t})^{-1} \qquad (1 - qe^{t})^{-1} \qquad (1 - qe^{t})^{-1} = 1 + x + x^{2} + \frac{1}{2}$$

$$= \frac{1}{2} (1 - qe^{t})^{-1} \qquad (1 - qe^{t})^{-1} = 1 + x + x^{2} + \frac{1}{2}$$

$$= \frac{2}{2} q^{2} + \frac{1}{2} - \frac{1}{2} (e^{t})^{2}$$

$$= \frac{2}{p^{2}} + \frac{1}{2} - \frac{1}{p^{2}} + \frac{1}{p^{2}} = \frac{2}{p^{2}} + \frac{1}{p^{2}} - \frac{1}{p^{2}} + \frac{1}{p^{2}} = \frac{1 + qe^{t}}{p} + \frac{1}{p^{2}} = \frac{1}{p^{2}} + \frac{1}{p} + \frac{1}{p} = \frac{1}{p^{2}} = \frac{1}{p^{2}} = \frac{1}{p^{2}}$$

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Memoryless property of the Geometric Distribution: If x is geometrically distributed, then for any two positive integers 's' and 't', P[x > s+t /x>s] = P[x>t] Proof : The p. d. f of x is, $p(x=x) = \dot{p}(x) = \dot{p}q^{x}$ $Consider P(X > s+t) = \sum_{X=s+t}^{\infty} pq^{X}$ $= \oint \left[q^{3+t} + q^{3+t+1} + q^{3+t+a} + q^{3+t+a} \right]$ $= Pq^{\beta+t} \left[1+q + q^2 + \cdots \infty \right]$ $= pq^{s+t} (1-q)^{-1}$ $P(X > s + t) = \frac{Pq^{s+t}}{1-q}$ $111'9 P(x > 3) = PQ'^{3}$ $P(x \neq t) = \frac{pq^{t}}{pq^{t}} \xrightarrow{\gamma} (1)$ Hence $P[x - s + t / x - s] = P[x - s + t \cap x - s]$ $P[x - s + t \cap x - s]$ $= \frac{P(x > s+t)}{P(x > s)}$ $= \frac{pq^{s+t}/1-q}{pq^{s}/1-q}$ $= q^{t}$ $= \frac{P}{1-q} q^{t} \qquad \left[\frac{P}{1-q} = \frac{P}{P} = 1 \right]$

16MA301- PROBABILITY AND QUEUEING THEORY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

 $P[x > s+t/x > s] = \frac{pqt}{1-q}$ $P[x > s+t/x > s] = P(x > t) \quad (from 0)$

Hence geometric distribution lacks memory.

Problems :

I If the probability is 0.05 that a certain kind of measuring device will show excessive drift, what is the Probability that the sixth of these measuring devices tes will be the first to show excessive drift ? Solution ; Let 'x' be the random variable denoting the number of measuring devices to show excessive drift. Let p = 0.05 We know that, $P(x = \pi) = p.q^{\pi}$ $P(x=6) = (0.05)(0.95)^{6}$ = 0.0368 find P(x is odd). Solution : We know that, $\mathcal{P}(x=x) = q^{x} p , x = 1/2, \cdots,$ $P(x = odd) = P(x = 1, 3, 5, \cdots)$ $= P(x = 1) + P(x = 3) + P(x = 5) + \cdots$ $= p q + p q^3 + p q^5 + \dots$