

SNS COLLEGE OF TECHNOLOGY

Coimbatore-26 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECT212 – CONTROL SYSTEMS

II YEAR/ IV SEMESTER

UNIT II – TIME RESPONSE ANALYSIS

TOPIC 5- STEADY STATE ERRORS

19ECT212/Control Systems/Unit 2/Dr.Swamynathan.S.M/ASP/ECE

•REVIEW ABOUT PREVIOUS CLASS

•STEADY STATE ERROR

•CLASSIFICATION OF CONTROL SYSTEMS

•STEADY STATE ERROR OF UNITY FEEDBACK SYSTEMS

•STATIC ERROR CONSTANTS

•STATIC POSITION ERROR CONSTANT (K_P)

•ACTIVITY

•STATIC VELOCITY ERROR CONSTANT (K_v)

•STATIC ACCELERATION ERROR CONSTANT (K_A)

•EXAMPLE

•SUMMARY

STEADY STATE ERROR

- If the output of a control system at steady state does not exactly match with the input, the system is said to have steady state error
- Any physical control system inherently suffers steady-state error in response to certain types of inputs.
- A system may have no steady-state error to a step input, but the same system may exhibit nonzero steady-state error to a ramp input.

CLASSIFICATION OF CONTROL SYSTEMS

- Control systems may be classified according to their ability to follow
 - Step inputs,
 - Ramp inputs,
 - Parabolic inputs, and so on.
- The magnitudes of the steady-state errors due to these individual inputs are indicative of the goodness of the system.

CLASSIFICATION OF CONTROL SYSTEMS

• Consider the unity-feedback control system with the following open-loop transfer function

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1)\cdots(T_m s + 1)}{s^N(T_1 s + 1)(T_2 s + 1)\cdots(T_p s + 1)}$$

- It involves the term ${\bf s}^{\sf N}$ in the denominator, representing ${\sf N}$ poles at the origin.

 A system is called type 0, type 1, type 2, ..., if N=0, N=1, N=2, ..., respectively.

CLASSIFICATION OF CONTROL SYSTEMS

- As the type number is increased, accuracy is improved.
- However, increasing the type number aggravates the stability problem.
- A compromise between steady-state accuracy and relative stability is always necessary.

STEADY STATE ERROR OF UNITY FEEDBACK SYSTEMS

• Consider the system shown in following figure.

• The closed-loop transfer function is

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} \qquad G(s) = \frac{K(T_a s + 1)(T_b s + 1)\cdots(T_m s + 1)}{s^N(T_1 s + 1)(T_2 s + 1)\cdots(T_p s + 1)}$$

- The transfer function between the error signal **E(s)** and the input signal **R(s)** is $\frac{E(s)}{R(s)} = \frac{1}{1+G(s)}$
- The final-value theorem provides a convenient way to find the steady-state performance of a stable system.
- Since E(s) is $E(s) = \frac{1}{1 + G(s)} R(s)$
- The steady state error is

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

STATIC ERROR CONSTANTS

- The static error constants are figures of merit of control systems. The higher the constants, the smaller the steady-state error.
- In a given system, the output may be the position, velocity, pressure, temperature, or the like.
- Therefore, in what follows, we shall call the output "position," the rate of change of the output "velocity," and so on.
- This means that in a temperature control system "position" represents the output temperature, "velocity" represents the rate of change of the output temperature, and so on.

The steady-state error of the system for a unit-step input is

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} \frac{1}{s}$$
$$= \frac{1}{1 + G(0)}$$

• The static position error constant K_p is defined by

$$K_p = \lim_{s \to 0} G(s) = G(0)$$

• Thus, the steady-state error in terms of the static position error constant K_p is given by $e_{ss} = \frac{1}{1 + V}$

STATIC POSITION ERROR CONSTANT (K_P

• For a Type 0 system

$$K_{p} = \lim_{s \to 0} \frac{K(T_{a}s + 1)(T_{b}s + 1)\cdots}{(T_{1}s + 1)(T_{2}s + 1)\cdots} = K$$

• For Type 1 or higher order systems

 $e_{ss} = 0,$

$$K_{p} = \lim_{s \to 0} \frac{K(T_{a}s + 1)(T_{b}s + 1)\cdots}{s^{N}(T_{1}s + 1)(T_{2}s + 1)\cdots} = \infty, \quad \text{for } N \ge 1$$

• For a unit step input the steady state error e_{ss} is

$$e_{\rm ss} = \frac{1}{1+K}$$
, for type 0 systems

for type 1 or higher systems

ACTIVITY-PUZZLES

Can you Solve this? IF 4+4=4 25+25=IO 16+16=8 9+9=6 THEN 1+1=? SHARE ONCE YOU SOLVED IT !!!

Solve this if you are a Genius

On which number the bus is parked?

STATIC VELOCITY ERROR CONSTANT (K_V)

• The steady-state error of the system for a unit-ramp input is

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} \frac{1}{s^2}$$
$$= \lim_{s \to 0} \frac{1}{sG(s)}$$

• The static velocity error constant K_v is defined by

$$K_v = \lim_{s \to 0} sG(s)$$

• Thus, the steady-state error in terms of the static velocity error constant K_v is given by e

STATIC VELOCITY ERROR CONSTANT (K_V)

• For a Type 0 system

$$K_{v} = \lim_{s \to 0} \frac{sK(T_{a}s + 1)(T_{b}s + 1)\cdots}{(T_{1}s + 1)(T_{2}s + 1)\cdots} = 0$$

• For Type 1 systems

$$K_{v} = \lim_{s \to 0} \frac{sK(T_{a}s + 1)(T_{b}s + 1)\cdots}{s(T_{1}s + 1)(T_{2}s + 1)\cdots} = K$$

• For type 2 or higher order systems

$$K_{v} = \lim_{s \to 0} \frac{sK(T_{a}s + 1)(T_{b}s + 1)\cdots}{s^{N}(T_{1}s + 1)(T_{2}s + 1)\cdots} = \infty, \quad \text{for } N \ge 2$$

STATIC VELOCITY ERROR CONSTANT (K_v)

• For a ramp input the steady state error **e**_{ss} is

$$e_{ss} = \frac{1}{K_v} = \infty$$
, for type 0 systems
 $e_{ss} = \frac{1}{K_v} = \frac{1}{K}$, for type 1 systems
 $e_{ss} = \frac{1}{K_v} = 0$, for type 2 or higher systems

STATIC ACCELERATION ERROR CONSTANT (K_A)

The steady-state error of the system for parabolic input is

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} \frac{1}{s^3}$$
$$= \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

• The static acceleration error constant K_a is defined by

$$K_a = \lim_{s \to 0} s^2 G(s)$$

Thus, the steady-state error in terms of the static acceleration error constant K_a is given by

$$e_{\rm ss} = \frac{1}{K_a}$$

STATIC ACCELERATION ERROR CONSTANT (K_A)

• For a Type 0 system

$$K_a = \lim_{s \to 0} \frac{s^2 K (T_a s + 1) (T_b s + 1) \cdots}{(T_1 s + 1) (T_2 s + 1) \cdots} = 0$$

• For Type 1 systems

$$K_a = \lim_{s \to 0} \frac{s^2 K (T_a s + 1) (T_b s + 1) \cdots}{s (T_1 s + 1) (T_2 s + 1) \cdots} = 0$$

• For type 2 systems

$$K_a = \lim_{s \to 0} \frac{s^2 K (T_a s + 1) (T_b s + 1) \cdots}{s^2 (T_1 s + 1) (T_2 s + 1) \cdots} = K$$

• For type 3 or higher order systems

$$K_{a} = \lim_{s \to 0} \frac{s^{2} K (T_{a} s + 1) (T_{b} s + 1) \cdots}{s^{N} (T_{1} s + 1) (T_{2} s + 1) \cdots} = \infty, \quad \text{for } N \ge 3$$

STATIC ACCELERATION ERROR CONSTANT (K_A)

• For a parabolic input the steady state error \mathbf{e}_{ss} is

$$e_{\rm ss} = \infty$$
, for type 0 and type 1 systems

$$e_{\rm ss} = \frac{1}{K}$$
, for type 2 systems

 $e_{\rm ss} = 0$, for type 3 or higher systems

STEADY STATE ERROR

• The deviation of the output of control system from desired response during steady state is known as steady state error. It is represented as e_{ss}

 $e_{ss} = \lim_{t o \infty} e(t) = \lim_{s o 0} E(s)$

STEADY STATE ERROR

$$E(s) = R(s) - C(s)$$

$$\Rightarrow E(s) = \frac{R(s)}{1 + G(s)}$$

$$e_{ss} = \lim_{s o 0} rac{sR(s)}{1+G(s)}$$

• The following table shows the steady state errors and the error constants for standard input signals like unit step, unit ramp & unit parabolic signals.

Input signal	Steady state error e_{ss}	Error constant
unit step signal	$rac{1}{1+k_p}$	$K_p = \lim_{s o 0} G(s)$
unit ramp signal	$\frac{1}{K_v}$	$K_v = \lim_{s o 0} sG(s)$
unit parabolic signal	$\frac{1}{K_a}$	$K_a = \lim_{s o 0} s^2 G(s)$

• Where Kp, Kv, Ka are the position error constant, velocity error constant and acceleration error constant respectively.

EXAMPLE

• For the system shown in figure below evaluate the static error constants and find the expected steady state errors for the standard step, ramp and parabolic inputs.

$$G(s) = \frac{100(s+2)(s+5)}{s^{2}(s+8)(s+12)}$$

$$K_{p} = \lim_{s \to 0} G(s)$$

$$K_{p} = \lim_{s \to 0} \left(\frac{100(s+2)(s+5)}{s^{2}(s+8)(s+12)} \right)$$

$$K_{p} = \infty$$

$$K_{v} = \lim_{s \to 0} \left(\frac{100s(s+2)(s+5)}{s^{2}(s+8)(s+12)} \right)$$

$$K_{v} = \lim_{s \to 0} \left(\frac{100s(s+2)(s+5)}{s^{2}(s+8)(s+12)} \right)$$

$$K_{a} = \lim_{s \to 0} s^{2}G(s)$$

$$K_{a} = \lim_{s \to 0} \left(\frac{100s^{2}(s+2)(s+5)}{s^{2}(s+8)(s+12)} \right)$$

$$K_{a} = \left(\frac{100(0+2)(0+5)}{(0+8)(0+12)} \right) = 10.4$$

19ECT212/Control Systems/Unit 2/Dr.Swamynathan.S.M/ASP/ECE

$$K_p = \infty$$
 $K_v = \infty$ $K_a = 10.4$

$$e_{\rm ss} = \frac{1}{1 + K_p} = 0$$

$$e_{\rm ss} = \frac{1}{K_v} = 0$$

$$e_{\rm ss} = \frac{1}{K_a} = 0.09$$

	Step Input $r(t) = 1$	Ramp Input r(t) = t	Acceleration Input $r(t) = \frac{1}{2}t^2$
Type 0 system	$\frac{1}{1+K}$	∞	∞
Type 1 system	0	$\frac{1}{K}$	∞
Type 2 system	0	0	$\frac{1}{K}$

19ECT212/Control Systems/Unit 2/Dr.Swamynathan.S.M/ASP/ECE