SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution
Coimbatore-35

WITTITITIONS

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECT308-WIRELESS TECHNOLOGIES FOR IoT
11l YEAR/ VI SEMESTER

UNIT 4 - PROTOTYPING AND DESIGNING SOFTWARE FOR IOT
APPLICATIONS

TOPIC Reading data from sensors and devices, Devices,
Gateways

19ECE308 WIRELESS TECHNOLOGIES FOR IOT / Dr.R.Kanmani/ECE/SNSCT

Fundamentals of Arduino Programming

Structure

void setup()
1

program

Statement(s):

h
void loop()
executed repeatedly

1

Statements():

triggering outputs efc.

j

//Preparation function used to declare variables
//First function that runs only one in the

/fused to set pins for serial communication
//Execution block where instructions are

//this 1s the core of the Arduino programming

//Functionalities involve reading inputs.

| ‘P)Play videoj

https://www.youtube.com/watch?v=mlNfxOpzDLw

Fundamentals of Arduino Programming

setup()

void setup()

1

loop()

pinMode(pin. INPUT):

void loop()

{

digitalWrite(pin. HIGH):

delay(10000):

digitalWrite(pin. LOW):

delay(10000):

/["pin’ configure as input

// After calling setup().loop() function does its task

//sets “pin’ ON

//pauses for ten thousand muili second
//sets ‘pin” OFF

//pauses for ten thousand muili second

Fundamentals of Arduino Programming

Functions
Syntax: fype functionName(parameters)
{
Statemeni(s);
J
Example:
int delayvar()
d
int var: //create temporary variable var
var=analogRead(potent): /lread from potentiometer
var=var/4: //convert the value of variable var
refurn var: /lreturn var

rogramming

{ } curly braces

They define beginning and end of function blocks. unbalanced braces may lead to

compile errors.

semicolon

It 1s used to end a statement and separate elements of a program.
Syntax: int x=14;

/*.....7/ block comments
Multiline comments begin with /* with a description of the block and ends with */.
Syntax: /*This is an enclosed block of comments
Use the closing comment to avoid errors®/

Fundamentals of Arduino Programming

//line comments

Single line comment begins with // and ends with next instruction followed.
Syntax: //This is a Single line comment

Variables
Example:
int var; [/lvariable ‘var” visible to all functions
Data Types
Data tvpe Syntax Eange
Byte byte x—100; 0-255
Int iff =200, 22767 10 32768
Long long var=80040; 2147483647 10 =2147483a48
Float float ==3.14: 3 4028235E+28 1o -
3 A402Z8235E+38
ArTAVE int myarray[=1 10.20,20,40% | Sire depends on the data type
associated with declaration.

Fundamentals of Arduino Programming

Operators
Operator Syntax and its usage
Arithmetic operators X=X135;
(+:-':"'r:*) Y'F"E;
7=z*2;
P=p/q:
Assignment operators | X+, /fsame as x=xt1

{=5-|_|_.' == = +=! =!l *=!"II’=J

x+=y: /lsame as x=x+vy
X-=V: [fsdle as x=xX-v

x*=y //same as x=x*y

X/=y //same as x=x/y

Comparison operators

==y /Xisequaltoy
x'=y [/x 15 not equal to y

==sm=9) x=<y //x1isless thany

x>y //x1s greater than y

X'=v/Xisnotequal tovy
Logical operators 172 && x5 //Evaluates to true only if both expression are true
(&) x>2 || y=2 //Evaluaftes to true if any one expression 1s trme

=2 /ftrue if only expression 1s false

Fundamentals of Arduino Programming

Constants

Constants

Usage

TRUE/FALSE

Boolean constants true=2 and false=0 defined in logic levels.
if(b=TRUE)

{
//do something

h

INPUT/OUTPUT

Used with pinMode () function to define levels.
pinMode(13,0UTPUT):

HIGH/LOW

Used to define pin levels
HIGH-1, ON, 5 volts
LOW-0,0FF, 0 volts
digitalWrite(13.HIGH):

Fundamentals of Arduino Programming

Flow control Statements

if if(some_variable == value)
{
Statement(s): //Evaluated only if comparison results i a true value
b

if...else if(input==HIGH)
{

Statement(s): //Evaluated only if comparison results in a true value

b

else

{

Statement(s): //Evaluated only if comparison results in a false value

b

Fundamentals of Arduino Programming

for for(initialization:condition:expression)
{
Dosomething; //Evaluated till condition becomes false
h
for(int p=0:p<5:p++) //declares p. tests if less than 5. increments by 1
{
digitalWrite(13.HIGH): //sets pin 13 ON
delay(250): // pauses for ¥4 second
digitalWrite(13.LOW): //sets pin 13 OFF
delay(250): //pause for % second
b
while while(some variable 77 value)
{

Statement(s). //Evaluated till comparison results in a false value

j

Fundamentals of Arduino Programming

do...while do
{

Dosomething:
}while(somevalue):

Fundamentals of Arduino Programming

Digital and Analog input output pins and their usage

Methods Usage

Dlgltﬂl i/o pinMode(pin, modc) Used 1n setup() method to confisure pin to behave as INPUT/OUTPUT

pinMode(pin, INPUT) /“pin” set to INPUT
pinMode(pin, OUTPUT) “pin’ set to OUTPUT
digitalFead(pin) Read value from a specified pin with result being HIGHTOW

Val=digitalRead(pin), /Val will be equal to input “pin’
digital Write{pin_ value) | Outputs to HIGH/TOW on a specified pin
digital Write{pin, HIGH); /“pin’ 12 set to HIGH

Example int x=13; ffconnect “x to pin 13
int p=7/: Heonnect pushbutton to pin /
int val=0: /ivariable to store the read value
voud setup()
i

pinMode(x, OUTPUT); /fzetz =" az OUTPUT
pinhode(p INPUT); /eetz “p’ az mput

¥

void loop()

i
val=digitalRead{p); M sets “value” to 0
digital Write{x val); /zets "x’ to button value

}

Fundamentals of Arduino Programming

Analog i/o
Methods Usage
analogRead(pin) Reads value from a specified analog pin works on pins 0-3.
val=analogRead(pin); //val equal to pin
analogWrite(pin,value) | Writes an analog value using pulse width modulation (PWM) to a pin
marked PWM works on pins 3, 5, 6,9,10.
Example int x=10; /lconnect X topin 13
int p=0; //connect potentiometer to analog pin 7
it val: /{variable for reading
void setup() { } // No setup 1s needed
void loop()
{
val=analogRead(p); /I sets “value to 0
val/=4;

analogWrite(x val); //outputs PWM signal to "x’
J

Fundamentals of Arduino Programming

time
Methods Usage
delay(ms) Pauses for amount of time specified in milliseconds.
delay(1000); //waits for one second
millis() Returns the number of milliseconds since Arduino 1s running.
val=millis(); //"val" will be equal to millis()
math
Methods Usage
min(x_v) Calculates minimum of two numbers
val=min (val 10); //sets "val” to smaller than 10 or equal to 10 but never
gets above 10.

max(x,v) val=max(val, 10); // sets "val to larger than 100 or 100.

Fundamentals of Arduino Programming

random
Methods Usage
randomSeed(value) | Sets a value/seed as starting pont for random () function.
random(min,max) Allows to return numbers within the range specified by min and max values.
val=random(100,200); //sets “val® to random number between 100-200
Example mnt rnumber; // variable to store random value
it x=10;
void setup()
{
randomseed(millis()); //set millis() as seed

rmumber=random(200); /random number from 0-200
analogWrite(x,mumber); //outputs PWM signal
delay(500);

;

Fundamentals of Arduino Programming

Serial
Methods Usage
Serial begin(rate) Opens senal port and sets the baud rate for senal data transmission.
void setup()
{
Serial begin(9600); //sets default rate to 9600 bps
;

Senal println(data) | Prints data to the senal port
Senal println(value); //sends the ‘value’ to serial monitor

Difference between Analog, Digital and PWM Pins

In analog pins, vou have unlimited possible states between 0 and 1023. This
allows you to read sensor values. For example. with a light sensor. 1f 1t 1s very dark. you’ll
read 1023. if 1t 1s very bright you’ll read 0 If there 1s a brightness between dark and very
bright yvou'll read a value between 0 and 1023.

In digital pins. you have just two possible states. which are on or off. These can
also be referred as High or Low. 1 or 0 and 5V or OV. For example. 1f an LED 1s on. then.
its state 1s High or 1 or 5V. If it 1s off. you’ll have Low. or 0 or OV,

PWM pins are digital pmns. so they output either 0 or 5V. However these pins
can output “fake” mtermediate voltage values between 0 and 5V. because they can

perform “Pulse Width Modulation™ (PWM). PWM allows to “simulate™ varying levels
of power by oscillating the output voltage of the Arduino.

Fundamentals of Arduino Programming

5 JR — P— r—
I I | I
5 5 | 2 o
= - i i i [
0 0 i g L
| .
Anulng Digi‘t al PWM

Difference between Analog, Digital and PWM Pins

Introduction to Communications

Serial (UART) communications:

Serial communication on Arduino pins Tx/Rx uses TTL logic levels which
operates at either 5V/3.3V depending the type of the board used.

Tx/Rx pins should not be connected to any source which operates more than
5V which can damage the Arduino board.

Serial communication is basically used for communication between Arduino

board and a computer or some other compatible devices.

Introduction to Communications

Serial (UART) communications:
*Every Arduimo board will have at least one serial port known as UART.

*Serial communicates on digital pins Rx(pin 0) and Tx(pin 1) with the computer
via USB. pin 0 and pin 1 cannot be used for digital input or output.

*The built in serial monitor can be used to communicate with an Arduino board
by selecting same baud rate that 1s used in the call to begin () which will come

across in the later part of the chapter

UART 1 UART 2

B8

Introduction to Communications

SPI communications

Serial communication Interface (SPI) 1s a synchronous data protocol used
by large microcontrollers for communicating with one or more peripheral
devices for a shorter distance and also used for communication between
two devices.
With SPI there will be always one master device which 1s a
microcontroller like Arduino which controls the functionalities of other
peripheral devices.
Devices have three lines in common which are as follows
o MISO (Master in Slave Out)- Slave line for sending data to the
master.
o MOSI (Master Out Slave In)- Master sending data to peripherals
o SCK Sernal clock) - clock pulses which synchronize data
transmission generated by the master And one of the specific line for
every device 1s
o SS (slave select) - pin on each device that the master can use to
enable and disable specific devices.

Introduction to Communications

SPI communications

* When device SS pin 1s low. communication happens with the master. if

SS pin 1s high device ignores the maser. This allows multiple SPI devices

sharing the the same MISO. MOSI and CLK lines.

* To program a new SPI device some key points to be noted which are
o Maximum SPI speed of the device used?
o How data 1s shifted like MSB/LSB?

o Data clock 1s 1dle when high/low.

SPI

Master

Introduction to Communications

I’C communications

* Inter-Integrated circuit or I?C (I squared C) 1s one of the best protocol used
when a workload of one Arduino (Master Writer) 1s shared with another
Arduino (Slave receiver).

* The I?C protocol uses two lines to send and receive data which are a serial
clock pin (SCL) which writes data at regular intervals and a serial data pin
(SDA) over which data sent between devices.

* When the clock signal changes from LOW to HIGH the information. the
address corresponds to a specific device and a command 1s transferred from
board to the I°C device over the SDA line.

* This information 1s sent bit by bit which 1s executed by the called device.

executes and transmits the data back.

Introduction to Communications

I*C communications

If the device require execution from another a slave device. the data 1s
transferred to the board on the same line using pulse generated from
Mater on SCL as timing.

Each slave should have unique 1dentity and both Master and slave turns
out communicating on the same data line. In this way many of the
Arduino boards are communicated using just two pins of microcontroller
with each unique address of a device.

SDhA - - = S04

Master 1 Slave 1
SCL > = S L
SDA - - - SO A

Master 2 Slave 2

sCL - = 5CL

Example modules on Arduino

* Interfacing programs on Arduino using LED

* Programs to interact with Serial Monitor of our
Computer Screen

* Interfacing Sensors

* Interfacing Display, GSM, GPS

* Interfacing Motors

Interfacing programs on Arduino using LED

. Blinking an LED
Toggle the state of LED using Switch

Traffic light simulation for pedestrians

-ﬁ-fﬂ!:ﬂh—l

. Create Dimmable LED using Potentiometer

Blinking an LED
1-LED, 1-KQ resistor, Jumper wires, Breadboard
required

\

AN
Cathads (-)\ % . Anode (+)

The longest lead 1s the anode and the shortest is the cathode.

Circuit Diagram

Arduino

Blinking an LED

Code

/*The Function setup runs only once when Arduino board is first powered up
or a rest button the board 1s pressed */
void setup()

{
pinMode(13. OUTPUT): //pin 13 is set as an OUTPUT pin

;

/MToop function iterates forever

void loop() {

digitalWrite(13, HIGH): //Sets LED to HIGH voltage
delay(1000): //delay by a second

digitalWrite(13, LOW): //Sets LED to LOW voltage
delay(1000): //delay by a second

;

Toggle the state of LED using Switch

1-LED, 1-KQ resistor, 1-push button, Jumper wires,
required Breadboard

I I — .
——— }{
Current not flowing Current flowing

Here an open pushbutton mechanism is used. In Normal state(not pushed) of
the button current doesn’t flow. only when button is pushed flow of current is
allowed

Toggle the state of LED using Switch

Circuit diagram

Switch

-

;:—

Arduino”

Tod B POWER
|||||||||||||

Toggle the state of LED using Switch

Code
/*The Function setup runs only once when Ardumo board is first

powered up or a rest button the board 1s pressed */

void setup()

{

pinMode(13. OUTPUT): //pin 13 1s set as an OUTPUT pin
;

//loop function iterates forever

void loop()

{

digitalWrite(13. HIGH): //Sets LED to HIGH voltage when a button 1s
/fpressed else 1t remains LOW

//delay by a second

delay(1000):

;

Traffic light Simulation for Pedestrians

Components 2-Red LED, 2-Green LED, 1-Yellow LED, 5-220Q
. resistor, Jumper wires, Breadboard
required

Traffic light Simulation for Pedestrians

Circuit diagram

fritzing

Traffic light Simulation for Pedestrians

Code
// Declare the variables for different colors of LEDs.

int red vehicle = 13:

int yellow vehicle = 12:

int green vehicle = 11:

int green Pedestrian =2:

int red Pedestrian= 3:

void setup()

{

// Initialize the pins for output
pinMode(red vehicle. OUTPUT):.
pinMode(yellow vehicle. OUTPUT):.
pinMode(green vehicle. OUTPUT):
pinMode(red Pedestrian. OUTPUT):.
pinMode(green Pedestrian. OUTPUT):
;

Trattic light Simulation for Pedestrians

void loop()

{

digitalWrite(green Vehicle, HIGH): // green LED turns ON
digitalWrite(red Pedestrian. HIGH):.

delay(5000):

digitalWrite(green Vehicle, LOW): // green LED turns OFF
digitalWrite(vellow Vehicle, HIGH): // Yellow LED turns ON for 2second.
delay(2000):

digitalWrite(vellow Vehicle, LOW): // yellow LED will turn OFF
digitalWrite(red Pedestrain, LOW):

digitalWrite(red Vehicle, HIGH): // Red LED turns ON for 5 seconds
digitalWrite (green Pedestrian. HIGH):

delay(5000):

digitalWrite(red Vehicle, LOW): // Red LED turns OFF
digitalWrite(green_Pedestrian, LOW);

}

Creating a Dimmable LED using Potentiometer

1-LED, 2209 resistor, 1-Potentiometer, Jumper wires,
Required Breadboard

In this program we dim the LED based on the value read from the
potentiometer. A "0" value from potentiometer 1s a "0V" and a value
"1023" from potentiometer 1s a "SV''. which means we need to write a
value of 255. Hence we need to scale our read values from the
potentiometer which falls between 0 to 1023 to suitable write values to

be between 0 to 255 using the below given formulae.
write value=(255/1023)* read value

Creating a Dimmable LED using Potentiometer

fritzing

Creating a Dimmable LED using Potentiometer

//Declaring the pins corresponds to an LED-to pin 9 and a Potentiometer- to
//pinA0
int pot Pin=A0:
int LED Pin=9:
int read Value: // To store the value read by potentiometer
int write Value: // To write the value to LED
void setup()
{ pinMode(pot Pin. INPUT):
pinMode(LED Pin. OUTPUT):.
Serial.begin(9600). }
void loop()
{ read Value = analogRead(pot Pin). //Potentiometer reading
write Value = (255./1023.) * readValue: //Write value for LED 1s calculated
analogWrite(LEDPin, writeValue). //Write to the LED
Serial.print("The writing vlues to the LED 1s "): //Debugging purpose
Serial.println(write Value): }

Programs to interact with Serial Monitor of our Computer Screen

To print the status of our computer Screen

Now. let’s mtroduce the interaction with the Serial monitor. In this program
we perform Arithmetic operations on the variables defined in the program.
variables are initialized inside the program. Serial monitor communication will
be processed when we call the method Serial.begin() with appropriate Baud
rate. Serial monitor displays the desired message of a program using the
method Serial.print() method.

Syntax:

Serial. begin(speed) /* to communicate between your computer and Serial
monitor */

Serial begin(speed. config)

Serial print() #To print desired message on the Serial monitor

Programs to interact with Serial Monitor of our Computer Screen

//In this program we compute basic aritmetic operations to print the result on
//to the Serial monitor.
mta=5.b=10.¢c=20:
void setup() // run once, when the sketch starts
{ Serial.begin(9600): /I set up Serial library at 9600 bps
Serial.println("Here 1s some math: "):
Serial. print("a="):
Serial. println(a):
Serial.print("b="):
Serial. println(b):
Serial. print("c ="):
Serial.println(c):

Programs to interact with Serial Monitor of our Computer Screen

Serial.prmnt("a+b="). //add
Serial.println(a + b):
Serialprint("a * ¢="). // multiply
Serial. println(a * ¢):

Sertalprint("c/b="). // divide
Serial.println(c / b):
Sertal.print("b-c="). // subtract
Serial.println(b - ¢):

;

void loop() { }

Interfacing Sensors to the Arduino

" Temperature Sensor
= Light Sensor
» Ultrasonic distance sensor

* Line sensor (infrared).

Interfacing Temperature Sensor

Component | Buzzer, LM35S Temperature Sensor, Jumper wires,
s Required Breadboard

LM35 Temperature Sensor:

The LM35 series are the gadgets with precision integrated circuit temperature whose
YlEld voltage falls directly corresponding to the Centigrade temperature.

] Calibrated Directly in Celsius (Centigrade)

] Operates from4 Vto 30V

[] Ranges are evaluated from Full —55°C to 150°C.

] Suitable for Remote Applications

Used in Battery Management

Pin No Function Name
1 Supply voltage; 5V (+35V to -2V) Voo
2 Crutput voltage (+6V to -1V) Outpuit
3 Ground (0V) Ground

Interfacing Temperature Sensor

Interfacing Temperature Sensor

//nitialize a variable temPin to Analog pin A%
it temPin = AS;

//Set buzzer to pin 13 as OUTPUT

it buzzer = 13:

/{Variable to store the temperature read
it value:

void setup()

1

//Initialize Serial baud rate to 9600
Serial.begin(9600):

//sets buzzer as an OUTPUT
pmnMode(buzzer, OUTPUT):

h

Interfacing Temperature Sensor

void loop()

d

//Read temperature value on pin AS by analogRead() method
value = analogRead(temPin):

//Conversion of temperature value read

float mvalue = (value/1024.0)*5000:

//Conversion of Temperature to celsius

float celsius = mvalue/10:

//conversion of temperature to Fahrenheit

float fahrenheit = (celsius*9)/5 + 32:

//print the celsius value onto the serial monitor
Serial.print(cel):

//check 1f the read temperature 1s greater than 32 degree celsius
if(cel=32)

{

//trigger HIGH value on buzzer

digitalWrite(buzzer. HIGH):

delay(1000):

Interfacing Temperature Sensor

/[trigger LOW value on buzzer
digital Write(buzzer. LOW):
//delay for 2 second
delay(2000):

/ltrigger HIGH value on buzzer
digitalWrite(buzzer, HIGH);
//delay for 1 second
delay(1000):

/[trigger LOW value on buzzer
digitalWrite(buzzer. LOW):
//delay for 2 second
delay(2000):

)

//Print the temperature onto a serial monitor
Serial.print("TEMPRATURE ="):
Serial.print(cel);

Serial.print("*C");

Serial.println(); }

Automatic lights with light sensor

Components |1x LED , 1x 220€2 resistor , 1x photoresistor , 1x 10k
Required resistor, Jumper wires, Breadboard

A photoresistor is a light-dependent resistor. The resistance of a photoresistor

decreases with increasing of light intensity. So:

» When there 1s light. the resistance decreases. we will have more current flowing.

» When there 1s no light. the resistor increases. we will have less current flowing.

Automatic lights with light sensor

8w T Mmoo e o
- W
- [S]
= =
- %
- =11
- &
1]

Bl
L
rduino”

T
M

fritzing

Automatic lights with light sensor

int led Pm=9;

int led Brightness = 0:

int sensor Pin = AQ;

int sensor_Value = 0;

void setup(void) {

pinMode(led Pm. OUTPUT):

// Send some information to Serail monitor
Serial.begin(9600):

h

Automatic lights with light sensor

void loop(void) {

sensor_Value = analogRead(sensor Pin):
Senal.print("Sensor reading: "):
Senal.println(sensor Value):

/I LED gets brighter the darker 1t 1s at the
sensor

// that means we have to -invert- the reading
from 0-1023 back to 1023-0

sensorValue = 1023 - sensorValue;

//now we have to map 0-1023 to 0-255 since
thats the range analogWrite //uses
ledBrightness = map(sensorValue. 0. 1023. 0.
255):

analogWrite(ledPin. ledBrightness):
delay(50):

h

To Measure Speed of Sound using Ultrasonic Sensorn

Components 1- HC-SR04 -ultrasonic sensor, Jumper wires,
Required Breadboard

Working of Ultrasonic sensor?
Trigger LOW-HIGH-LOW sequence on the pin which creates a high pitched
ultrasonic tone which sent out from the sensor. which will go out and bounce off the

first thing in front of it and back to the sensor.
The sensor will output HIGH on the pin and length of pulse in microseconds
indicates time it took the ping to travel to target and return.
Measure the length of the pulse using pulseln command.
Calculate the speed of sound by
distance= rate * time
rate = time/distance
convert this to miles per hour as follows:
(rate in inches/mircrosecond)*(1000000 microsecond/second)*

(3600 seconds/hour)*(1 mile/63360 inches)

To Measure Speed of Sound using Ultrasonic Senso

fritzing

0 Measure Speed of Sound using Ultrasonic Sensor

int trig_ Pin=13: //Connect Trip pin of sensor to
13 pin of Arduino
int echo Pin=11: //Connect sensor echo pin to
11 pin of Arduino
float pinging Time;
float speed Of Sound:
int target Distance=6. //Target distance i
inches
void setup() {
Serial.begin(9600):
pinMode(trig Pm. OUTPUT):
pinMode(echo Pin. INPUT):
h

To Measure Speed of Sound using Ultrasonic Sensor

void loop() {

digitalWrite(trig Pm. LOW): //trigpin set to LOW

delayMicroseconds(2000):

digitalWrite(trig Pin. HIGH): //trigPin to high

delayMicroseconds(10):

digitalWrite(trig Pm. LOW): //Send ping

pingTime = pulseIn(echo Pin. HIGH): /*pingTime is presented
in microceconds */

speedOfSound =
(targetDistance®2)/pinging Time*(1000000)*3600/63360:
//converts to miles per hour

Serial.print("The Speed of Sound 1s: "):

Serial.print(speed Of Sound):

Serial. println(" miles per hour"):

delay(1000):
)

Obstacle collision module using IR(Infrared) sensor

Components | 1-IR sensor, Jumper wire, Breadboard
Required

An Infrared sensor is an electronic mstrument which 1s used to sense certain
characteristics of its surroundings by either emitting and/or detecting infrared

radiation. Infrared sensors are also capable of measuring the heat being emitted by
an object and detecting motion.

Obstacle collision module using IR(Infrared) senso1

Obstacle collision module using IR(Infrared) sensor

/I IR Obstacle Collision Detection Module

mt LED =13:

int 1s_Obstacle Pin=7: // input pin for ostacle
int 1s_Obstacle = HIGH: // value HIGH tells
there's no obstacle

void setup() {
pinMode(LED. OUTPUT):
pinMode(is Obstacle Pin, INPUT):
Serial.begin(9600):

Obstacle collision module using IR(Infrared) sensor

void loop() {
i1s_Obstacle = digitalRead(is_Obstacle Pin):
if (1s_Obstacle == LOW)
{
Serial.println("OBSTACLE!!.
OBSTACLE!!"):
digitalWrite(LED., HIGH):
h
else
{
Serial.println("clear");
digitalWrite(LED., LOW):
h
delay(200):

h

More Examples Refer Textbook

 Interfacing Display, GSM, GPS to Arduino
* Temperature and LCD Display

* (Custom Characters in LCD

* 7 Segment Display on Arduino
d GSM Interface
d GPS Interface
J Interfacing Motors

B Servo motor

Self Test Questions

* What 1s a Arduino?

* (Can I connect a mouse and keyboard to Arduino Uno?
* What SOC Arduino using?

* What 1s a SOC?

* Does Ardumno Uno overclock?

* Does Arduino uno need a heat sink?

* Does Arduino Uno has any hardware interfaces?

* Does Ardumo Uno need an External power source?
* Which IDE environment does Arduino Uno use?

* Does the Ardumno supports networking?

* Detine a Microcontroller?

» State the use of Serial Monitor in Ardumo IDE?

* Detine the term Baud Rate?

Review Questions

* How 1s Ardumo Uno 1s different from the other available
Microcontrollers?

* What 1s the use of GPIO pins?

* What 1s the use of I2C interfaces on Raspberry P1?

* How many pins does the Atmega328P MCU used on the standard
Ardumno have? Over what range of voltages will 1t operate?

* Assume that you have an LED connected to each of the 14
digital-only I/O pins on the Arduino.

» If all of the LEDs could possibly be on at the same tume, what
must the current be limited to through each of the LEDs?

* Assume that a project requires that a high-brightness LED be on
any tume that the Ardumno 1s powered-on, and that this LED

requires 350mA. What 1s the best way to supply power/current
to this LED?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7:
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

