

(An Autonomous Institution)



#### **DEPARTMENT OF MATHEMATICS**

Continuous Random Variable :

A random variable 'X' is called a continuous random variable if it takes all possible values in a given interval.

Examples : Age, Height and Weight Distribution function (or) Cumulative Distribution function of the random Variable X :

The C.D.F of a Continuous random variable X is defined as,

$$F(x) = P(x \le x) = \int_{-\infty}^{x} f(x) dt dx$$

Probability Density function: (P.D.f)

Let X be a Continuous random Variable. The function f(X) is called the p.d.f of the random Variable X if it satisfies the following Conditions:

Ь

(i)  $f(x) \ge 0$ ,  $-\infty \ge x \ge \infty$ (ii)  $\int_{-\infty}^{\infty} f(x) dx = 1$ 

Remark:

1. 
$$P(a \ge x \le b) = P(a \le x \le b) = \int_{a}^{\infty} f(x) dx$$
  
2.  $P(x \ge a) = \int_{a}^{\infty} f(x) dx$   
3.  $P(x \ge a) = \int_{a}^{a} f(x) dx$   
 $-\infty$   
4.  $P(x \ge a | x \ge b) = \frac{P(x \ge a)}{P(x \ge a)}$ 

16MA203-PRP



(An Autonomous Institution)

### **DEPARTMENT OF MATHEMATICS**



(+) If 'x' is a Continuous random Variable whose p.d.f is given by,  $f(x) = \begin{cases} c(4x - ax^2), 0 \le x \le a \\ 0, \text{ otherwise} \end{cases}$ Find (a) What is the value of 'c'? (b) Find P(x >1) Solution : (a) Given:  $f(x) = \begin{cases} c(4x - 2x^2), 0 < x < 2 \\ 0, 0 \end{cases}$ , otherwise  $\int f(x) dx = 1$  $\int C(4x-ax^2) dx = 1$  $C \int 4 \frac{\chi^2}{2} - 2 \frac{\chi^3}{3} \int d = 1$  $C \left[ 2^{2} \left( 2^{2} \right) - \frac{2}{2} \left( 2^{3} \right) \right] = 1$  $C\left[\frac{8-\frac{16}{3}}{3}\right]=1 \implies C\left(\frac{24-16}{3}\right)=1$  $C\left(\frac{8}{3}\right) = 1$  $C = \frac{3}{8}$ Put  $C = \frac{3}{2}$  in (1),  $f(x) = \begin{cases} \frac{3}{8} (4x - 2x^2), & 0 < x < 2 \\ 0, & 0 \end{cases}$ 

16MA203-PRP



(An Autonomous Institution)



(b)  $P(x > i) = \int_{1}^{\infty} f(x) dx$  $= \int_{1}^{2} f(x) dx + \int_{2}^{\infty} f(x) dx$   $= \int_{1}^{2} \frac{3}{8} (4x - 2x^{2}) dx + 0$   $= \frac{3}{8} \times 2 \int_{1}^{2} (2x - x^{2}) dx$   $= \frac{3}{4} \left[ 2 \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{1}^{2}$   $= \frac{3}{4} \left[ (4 - i) - \frac{1}{5} (8 - i) \right]$   $= \frac{3}{4} \left[ 3 - \frac{7}{3} \right] = \frac{3}{4} \left[ \frac{9 - 7}{5} \right] = \frac{2}{4} = \frac{1}{2}$   $P(x > i) = \frac{1}{2}$ 

5 The amount of time, in hours, that a Computer functions A before breaking down is a Continuous random Variable with Probability density function given by,

$$f(x) = \int \lambda e^{-\chi/100}, \ \chi \ge 0$$

What is the probability that (a) a Computer will function between 50 and 150 hrs, before breaking down (b) it will function less than 500 hours.

16MA203-PRP



(An Autonomous Institution)

### **DEPARTMENT OF MATHEMATICS**

Solution:  
Given: 
$$f(x) = \begin{cases} \lambda e^{-x/100} & x \ge 0 \\ 0 & y \ge 0 \end{cases} \longrightarrow 0$$
  
Since  $f(x)$  is a p.d.f of 'x',  

$$\int_{-\infty}^{\infty} f(x) dx = i$$

$$\int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx = i$$

$$\int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx = i$$

$$\int_{-\infty}^{0} \frac{e^{-x/100}}{1} \int_{0}^{\infty} = i$$

$$\lambda \left( -\frac{100}{1} \right) \left[ e^{-\infty} - e^{0} \right] = i$$

$$\lambda (-100) \left[ e^{-\infty} - e^{0} \right] = i$$

$$\frac{\lambda (-100) \left[ e^{-1} \right] = i}{\left[ \frac{\lambda - \frac{1}{100}}{10} \right]}$$
(a) We know that,  

$$P(a \le x \le b) = \int_{0}^{b} f(x) dx$$

$$P(50 \le x \le 150) = \int_{50}^{150} f(x) dx$$

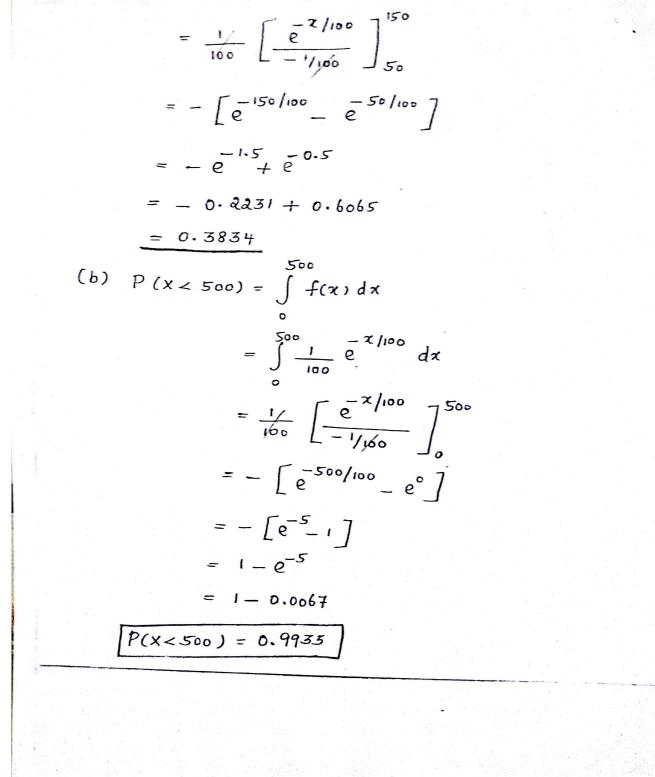
$$= \int_{50}^{150} \frac{e^{-x/100}}{100} dx$$



(An Autonomous Institution)

# METTITUTIONS

### **DEPARTMENT OF MATHEMATICS**



16MA203-PRP