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Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling
 Synchronous and asynchronous

 Thread cancellation of target thread
 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations
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Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all threads?
• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the running process 
including all threads
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Signal Handling

n Signals are used in UNIX systems to notify a process that a particular 
event has occurred.

n A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

n Every signal has default handler that kernel runs when handling 
signal
l User-defined signal handler can override default
l For single-threaded, signal delivered to process
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Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded? 
l Deliver the signal to the thread to which the signal applies

l Deliver the signal to every thread in the process

l Deliver the signal to certain threads in the process

l Assign a specific thread to receive all signals for the process
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Thread Cancellation
• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:
• Asynchronous cancellation terminates the target thread immediately

• Deferred cancellation allows the target thread to periodically check if it 
should be cancelled

• Pthread code to create and cancel a thread:
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Thread Cancellation (Cont.)
• Invoking thread cancellation requests cancellation, but actual cancellation 

depends on thread state

• If thread has cancellation disabled, cancellation remains pending until thread 
enables it

• Default type is deferred
• Cancellation only occurs when thread reaches cancellation point

• I.e. pthread_testcancel()
• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals
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Thread-Local Storage

• Thread-local storage (TLS) allows each thread to have its own copy of 
data

• Useful when you do not have control over the thread creation process 
(i.e., when using a thread pool)

• Different from local variables
• Local variables visible only during single function invocation

• TLS visible across function invocations

• Similar to static data
• TLS is unique to each thread
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Scheduler Activations

• Both M:M and Two-level models require communication to 
maintain the appropriate number of kernel threads 
allocated to the application

• Typically use an intermediate data structure between user 
and kernel threads – lightweight process (LWP)
• Appears to be a virtual processor on which process can schedule 

user thread to run
• Each LWP attached to kernel thread
• How many LWPs to create?

• Scheduler activations provide upcalls - a communication 
mechanism from the kernel to the upcall handler in the 
thread library

• This communication allows an application to maintain the 
correct number kernel threads
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