
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Mrs. M. Lavanya

Assistant Professor

Department of Computer Science and Engineering

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – I OVERVIEW AND PROCESS MANAGEMENT

Topic: Threads : Multi-threading Models

Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling
 Synchronous and asynchronous

 Thread cancellation of target thread
 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 2

Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all threads?
• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the running process
including all threads

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 3

Signal Handling

n Signals are used in UNIX systems to notify a process that a particular
event has occurred.

n A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

n Every signal has default handler that kernel runs when handling
signal
l User-defined signal handler can override default
l For single-threaded, signal delivered to process

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 4

Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?
l Deliver the signal to the thread to which the signal applies

l Deliver the signal to every thread in the process

l Deliver the signal to certain threads in the process

l Assign a specific thread to receive all signals for the process

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 5

Thread Cancellation
• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:
• Asynchronous cancellation terminates the target thread immediately

• Deferred cancellation allows the target thread to periodically check if it
should be cancelled

• Pthread code to create and cancel a thread:

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 6

Thread Cancellation (Cont.)
• Invoking thread cancellation requests cancellation, but actual cancellation

depends on thread state

• If thread has cancellation disabled, cancellation remains pending until thread
enables it

• Default type is deferred
• Cancellation only occurs when thread reaches cancellation point

• I.e. pthread_testcancel()
• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 7

Thread-Local Storage

• Thread-local storage (TLS) allows each thread to have its own copy of
data

• Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

• Different from local variables
• Local variables visible only during single function invocation

• TLS visible across function invocations

• Similar to static data
• TLS is unique to each thread

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 8

Scheduler Activations

• Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads
allocated to the application

• Typically use an intermediate data structure between user
and kernel threads – lightweight process (LWP)
• Appears to be a virtual processor on which process can schedule

user thread to run
• Each LWP attached to kernel thread
• How many LWPs to create?

• Scheduler activations provide upcalls - a communication
mechanism from the kernel to the upcall handler in the
thread library

• This communication allows an application to maintain the
correct number kernel threads

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 9

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT

10

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-I/ OVERVIEW AND PROCESS MANAGEMENT/
Threads : Threading Issues/ Mrs.M.Lavanya/AP/CSE/SNSCT 11

