

SNS COLLEGE OF TECHNOLOGY

Coimbatore – 35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

16EC401 / Wireless Communication

IV ECE/ VII SEMESTER

Unit IV - MULTIPATH MITIGATION TECHNIQUES

Topic 1: Equalization

Introduction

- •Three techniques are used independently or in tandem to improve receiver signal quality
- Equalization compensates for ISI created by multipath with time dispersive channels ($W>B_C$)
 - Linear equalization, nonlinear equalization
 - >counters the effects of time dispersion (ISI)
- Diversity also compensates for fading channel impairments.
 - >Implemented by using two or more receiving antennas
 - ➤ Spatial diversity, antenna polarization diversity, frequency diversity, time diversity
 - Reduces the depth and duration of the fades experienced by a receiver in a flat fading (narrowband) channel

- Channel Coding improves mobile communication link performance by adding redundant data bits in the transmitted message
 - Channel coding is used by the Rx to detect or correct errors introduced by the channel (Post detection technique)
 - ➤ Block code and convolutional code

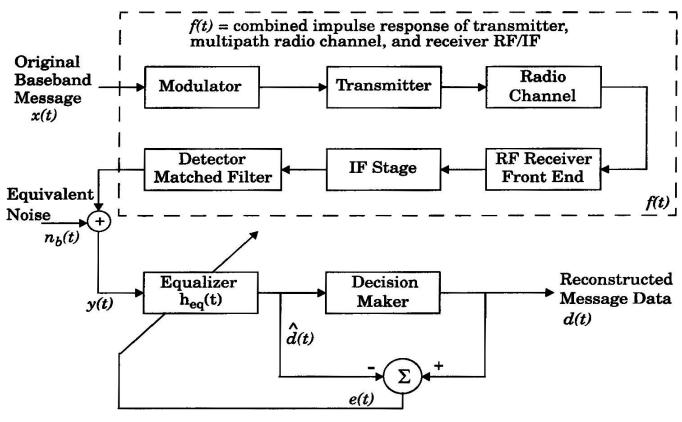
Equalization Techniques

- ✓ The term *equalization* can be used to describe any signal processing operation that minimizes ISI
- √ Two operation modes for an adaptive equalizer
 - Training and tracking
- ✓ Known, fixed-length training sequence is sent by the transmitter
- ✓ The training sequence is typically a pseudorandom binary signal or a fixed, prescribed bit pattern
- ✓ Immediately following this training sequence, the user data is sent

- The adaptive equalizer at the receiver utilizes a recursive algorithm to evaluate the channel
- Estimate filter coefficients to compensate for the channel
- As user data are received, the adaptive algorithm of the equalizer tracks the changing channel
- As a consequence, the adaptive equalizer is continually changing its filter characteristics over time

Activity

- >Imagine folding a paper in half once
- Then take the result and fold it in half again; and so on
- ➤ How many times can you do that?



- ✓ Three factors affect the time spanning over which an equalizer converges:
 - > Equalizer algorithm
 - >Equalizer structure
 - Time rate of change of the multipath radio channel
- ✓TDMA wireless systems are particularly well suited for equalizers

Equalizer Prediction Error

Block diagram of a simplified communications system using an adaptive equalizer at the receiver.

The output of equaliser

$$\hat{d}(t) = x(t) \otimes f^*(t) \otimes h_{eq}(t) + n_b(t) \otimes h_{eq}(t)$$

$$= x(t) \otimes g(t) + n_b(t) \otimes h_{eq}(t)$$

- •x (t) is the original information signal
- •f(t) is the combined complex baseband impulse response of the transmitter, channel and the RF/IF sections of the receiver
- •f* (t) is the complex conjugate of f(t)
- •n_b(t) is the baseband noise at the input of the equalizer
- ⊗ denotes the convolution operation
 - •heq (t) is impulse response of the equalizer

The desired output of equaliser

$$\hat{d}(t) = x(t)$$

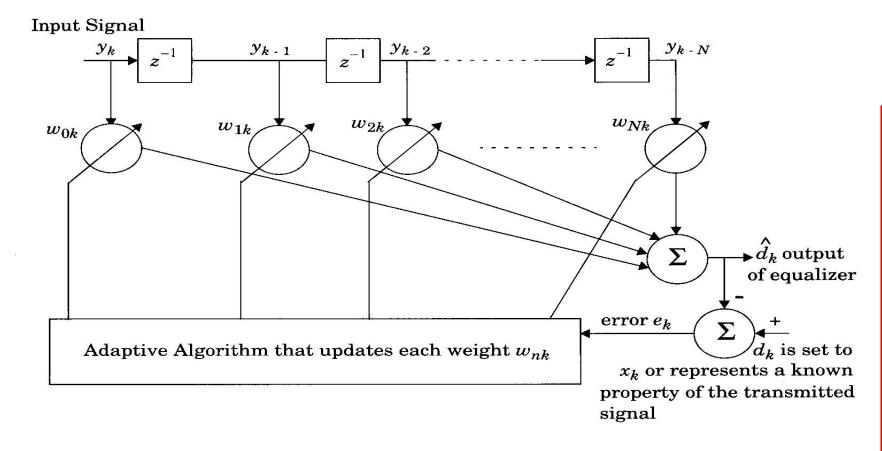
To get this

$$g(t) = f^*(t) \otimes h_{eq}(t) = \delta(t)$$

Goal of equalisation is satisfy the above equation.

In Frequency domain,

$$H_{eq}(f)F^*(-f) = 1$$



- If the channel is frequency selective, the equalizer enhances the frequency components with small amplitudes and attenuates the strong frequencies in the received frequency response
- For a time-varying channel, an adaptive equalizer is needed to track the channel variations

Basic Structure of Adaptive Equalizer

A basic linear equalizer during training.

Basic Structure of Adaptive Equalizer

- ➤ Transversal filter with N delay elements, N+1 taps, and N+1 tunable complex weights
- These weights are updated continuously by an adaptive algorithm
- The adaptive algorithm is controlled by the error signal ek

$$e_k = d_k - d_k$$

Basic Structure of Adaptive Equalizer

•Classical equalization theory : using training sequence to minimize the cost function

$$E[e(k) e^*(k)]$$

- •Recent techniques for adaptive algorithm: blind algorithms
 - Constant Modulus Algorithm (CMA, used for constant envelope modulation)
 - Spectral Coherence Restoral Algorithm (SCORE, exploits spectral redundancy or cyclostationarity in the Tx signal)

Assessment

- What are the modes of adaptive equalizer?
 - a) Training mode
 - b) Tracking mode
 - c) Both of the mentioned
 - d) None of the mentioned

- ➤ The ISI and adjacent channel interference is removed by
 - a) Cancelling filter
 - b) Port processing equalizer
 - c) Both of the mentioned
 - d) None of the mentioned

THANK YOU