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19CST302-Neural Networks and Deep Learning



Basic Neuron
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Expanded Neuron
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Perceptron Learning Algorithm
First neural network learning model in the 1960’s

◦ Frank Rosenblatt

Simple and limited (single layer model)

Basic concepts are similar for multi-layer models so this is a good 
learning tool

Still used in some current applications (large business problems, where 
intelligibility is needed, etc.)
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Perceptron Node – Threshold 
Logic Unit
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Perceptron Node – Threshold 
Logic Unit
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• What objective function should we use?

• What learning algorithm should we use?
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Perceptron Learning Algorithm
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First Training Instance
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Second Training Instance
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Perceptron Rule Learning
   Dwi = c(t – z) xi

Where wi is the weight from input i to the perceptron node, c is the learning rate, t is 
the target for the current instance, z is the current output, and xi is  ith input

Least perturbation principle 
◦ Only change weights if there is an error

◦ small c rather than changing weights sufficient to make current pattern correct

◦ Scale by xi

Create a perceptron node with n inputs

Iteratively apply a pattern from the training set and apply the perceptron rule

Each iteration through the training set is an epoch

Continue training until total training set error ceases to improve

Perceptron Convergence Theorem:  Guaranteed to find a solution in finite time if a 
solution exists
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Augmented Pattern Vectors
1 0 1 -> 0

1 0 0 -> 1

Augmented Version

1 0 1 1 -> 0

1 0 0 1 -> 1

Treat threshold like any other weight.  No special case.  Call it a bias 
since it biases the output up or down.

Since we start with random weights anyways, can ignore the - notion, 
and just think of the bias as an extra available weight. (note the author 
uses a -1 input)

Always use a bias weight

12
19CST302/NEURAL NETWORKS AND DEEP 

LEARNING/DR.A.SUMITHRA



Perceptron Rule Example
Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

Assume a learning rate c of 1 and initial weights all 0:  Dwi = c(t – z) xi

Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) DW

0 0 1  1 0 0 0 0 0  

13
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Example
Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

Assume a learning rate c of 1 and initial weights all 0:  Dwi = c(t – z) xi

Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) DW

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0
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Example
Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

Assume a learning rate c of 1 and initial weights all 0:  Dwi = c(t – z) xi

Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) DW

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1
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Peer Instruction
I pose a challenge question (often multiple choice), which will help 
solidify understanding of topics we have studied

◦ Might not just be one correct answer

You each get some time (1-2 minutes) to come up with your answer and 
vote – use Mentimeter (anonymous)

Then you get some time to convince your group (neighbors) why you 
think you are right (2-3 minutes)

◦ Learn from and teach each other!

You vote again.  May change your vote if you want.

We discuss together the different responses, show the votes, give you 
opportunity to justify your thinking, and give you further insights

16
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Peer Instruction
I pose a challenge question (often multiple choice), which will help 
solidify understanding of topics we have studied

◦ Might not just be one correct answer

You each get some time (1-2 minutes) to come up with your answer and 
vote – use Mentimeter (anonymous)

Then you get some time to convince your group (neighbors) why you 
think you are right (2-3 minutes)

◦ Learn from and teach each other!

You vote again.  May change your vote if you want.

We discuss together the different responses, show the votes, give you 
opportunity to justify your thinking, and give you further insights
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Peer Instruction (PI) Why
Studies show this approach improves learning

Learn by doing, discussing, and teaching each other 
◦ Curse of knowledge/expert blind-spot

◦ Compared to talking with a peer who just figured it out and who can explain it in 
your own jargon

◦ You never really know something until you can teach it to someone else – More 
improved learning!

Learn to reason about your thinking and answers

More enjoyable - You are involved and active in the learning

18
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How Groups Interact
Best if group members have different initial answers 

3 is the “magic” group number
◦ You can self-organize "on-the-fly" or sit together specifically to be a group

◦ Can go 2-4 on a given day to make sure everyone is involved

Teach and learn from each other: Discuss, reason, articulate

If you know the answer, listen to where colleagues are coming from 
first, then be a great humble teacher, you will also learn by doing that, 
and you’ll be on the other side in the future

◦ I can’t do that as well because every small group has different 
misunderstandings and you get to focus on your particular questions

Be ready to justify to the class your vote and justifications!

19
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**Challenge Question** - 
Perceptron

Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

Assume a learning rate c of 1 and initial weights all 0:  Dwi = c(t – z) xi

Training set 0 0 1 -> 0
1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) DW

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1

20

⚫ Once it converges the final weight vector will be
A. 1 1 1 1
B. -1 0 1 0
C. 0 0 0 0
D. 1 0 0 0
E. None of the above
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Example
Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

Assume a learning rate c of 1 and initial weights all 0:  Dwi = c(t – z) xi

Training set 0 0 1 -> 0
1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) DW

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1  3 1 0  0  0  0

0 1 1  1 0 1 1 1 1    
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Example
Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

Assume a learning rate c of 1 and initial weights all 0:  Dwi = c(t – z) xi

Training set 0 0 1 -> 0
1 1 1 -> 1
1 0 1 -> 1
0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) DW

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1  3 1 0  0  0  0

0 1 1  1 0 1 1 1 1  3 1 0 -1 -1 -1

0 0 1  1 0 1 0 0 0  
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Example
Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

Assume a learning rate c of 1 and initial weights all 0:  Dwi = c(t – z) xi

Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) DW

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1  3 1 0  0  0  0

0 1 1  1 0 1 1 1 1  3 1 0 -1 -1 -1

0 0 1  1 0 1 0 0 0  0 0 0  0  0  0

1 1 1  1 1 1 0 0 0  1 1 0  0  0  0

1 0 1  1 1 1 0 0 0  1 1 0  0  0  0

0 1 1  1 0 1 0 0 0  0 0 0  0  0  0
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Perceptron Homework
Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

Assume a learning rate c of 1 and initial weights all 1:  Dwi = c(t – z) xi

Show weights after each pattern for just one epoch

Training set 1  0  1 -> 0

1 .5  0 -> 0

1 -.4 1 -> 1

0  1 .5 -> 1

Pattern Target (t) Weight Vector (wi) Net Output (z) DW

   1  1  1  1

24
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Training Sets and Noise
Assume a Probability of Error at each input and output value each time a 
pattern is trained on

0 0 1 0 1 1 0 0 1 1 0  -> 0 1 1 0

i.e. P(error) = .05

Or a probability that the algorithm is applied wrong (opposite) 
occasionally

Averages out over learning

25
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If no bias weight, the 

hyperplane must go 

through the origin.

Note that since 𝛳 = -bias, 

the equation with bias is:

X2 = (-W1/W2)X1 - bias/W2
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Linear Separability
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Linear Separability and 
Generalization

29

When is data noise vs. a legitimate exception
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Limited Functionality of 
Hyperplane

30
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How to Handle Multi-Class Output
⚫This is an issue with learning models which only support binary 
classification (perceptron, SVM, etc.)

⚫Create 1 perceptron for each output class, where the training set 
considers all other classes to be negative examples (one vs the rest)

◦ Run all perceptrons on novel data and set the output to the class of the 
perceptron which outputs high

◦ If there is a tie, choose the perceptron with the highest net value

⚫Another approach: Create 1 perceptron for each pair of output classes, 
where the training set only contains examples from the 2 classes (one vs 
one)

◦ Run all perceptrons on novel data and set the output to be the class with the 
most wins (votes) from the perceptrons

◦ In case of a tie, use the net values to decide

◦ Number of models grows by the square of the output classes

31
19CST302/NEURAL NETWORKS AND DEEP 

LEARNING/DR.A.SUMITHRA



UC Irvine Machine Learning Data 
Base
Iris Data Set

32

4.8,3.0,1.4,0.3, Iris-setosa
5.1,3.8,1.6,0.2, Iris-setosa
4.6,3.2,1.4,0.2, Iris-setosa
5.3,3.7,1.5,0.2, Iris-setosa
5.0,3.3,1.4,0.2, Iris-setosa
7.0,3.2,4.7,1.4, Iris-versicolor
6.4,3.2,4.5,1.5, Iris-versicolor
6.9,3.1,4.9,1.5, Iris-versicolor
5.5,2.3,4.0,1.3, Iris-versicolor
6.5,2.8,4.6,1.5, Iris-versicolor
6.0,2.2,5.0,1.5, Iris-viginica
6.9,3.2,5.7,2.3, Iris-viginica
5.6,2.8,4.9,2.0, Iris-viginica
7.7,2.8,6.7,2.0, Iris-viginica
6.3,2.7,4.9,1.8, Iris-viginica
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Objective Functions: Accuracy/Error

⚫How do we judge the quality of a particular model (e.g. Perceptron with a 
particular setting of weights)

⚫Consider how accurate the model is on the data set
◦ Classification accuracy =  # Correct/Total instances

◦ Classification error =  # Misclassified/Total instances (= 1 – acc)

⚫Usually minimize a Loss function (aka cost, error)

⚫For real valued outputs and/or targets
◦ Pattern error = Target – output:  Errors could cancel each other
⚫ S|tj – zj|  (L1 loss), where j indexes all outputs in the pattern

⚫ Common approach is Squared Error = S(tj – zj)
2   (L2 loss)  

◦ Total sum squared error = S pattern squared errors = S S (tij – zij)
2 where i indexes 

all the patterns in training set

⚫For nominal data, pattern error is typically 1 for a mismatch and 0 for a match
◦ For nominal (including binary) output and targets, L!, L2, and classification error are 

equivalent

33
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Mean Squared Error
Mean Squared Error (MSE) – SSE/n where n is the number of instances 
in the data set

◦ This can be nice because it normalizes the error for data sets of different 
sizes

◦ MSE is the average squared error per pattern

Root Mean Squared Error (RMSE) – is the square root of the MSE
◦ This puts the error value back into the same units as the features and can 

thus be more intuitive
◦ Since we squared the error on the SSE

◦ RMSE is the average distance (error) of targets from the outputs in the same 
scale as the features

◦ Note RMSE is the root of the total data set MSE, and NOT the sum of the 
root of each individual pattern MSE

34
19CST302/NEURAL NETWORKS AND DEEP 

LEARNING/DR.A.SUMITHRA



**Challenge Question** - Error
Given the following data set, what is the L1 (S|ti – zi|), SSE (L2) (S(ti – zi)

2), 
MSE, and RMSE error for the entire data set?

35

x y Output Target Data Set

2 -3 1 1

0 1 0 1

.5 .6 .8 .2

L1 ?

SSE ?

MSE ?

RMSE ?

A. .4  1  1  1
B. 1.6  2.36  1  1
C. .4  .64  .21  0.453
D. 1.6  1.36  .67  .82
E. None of the above

19CST302/NEURAL NETWORKS AND DEEP 

LEARNING/DR.A.SUMITHRA



**Challenge Question** - Error

36

x y Output Target Data Set

2 -3 1 1

0 1 0 1

.5 .6 .8 .2

L1 1.6

SSE 1.36

MSE 1.36/3 = .453

RMSE .45^.5 = .67

A. .4  1  1  1
B. 1.6  2.36  1  1
C. .4  .64  .21  0.453
D. 1.6  1.36  .67  .82
E. None of the above

⚫ Given the following data set, what is the L1 (S|ti – zi|), SSE (L2) 

(S(ti – zi)
2), MSE, and RMSE error for the entire data set?
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Error Values Homework
Given the following data set, what is the L1, SSE (L2), MSE, and RMSE 
error of Output1, Output2, and the entire data set? Fill in cells that have a 
?.

◦ Notes: For instance 1 the L1 pattern error is 1 + .6 = 1.6 and the SSE pattern 
error is 1 + .16 = 1.16.  The Data Set L1 and SSE errors will just be the sum of 
each of the pattern errors. 

37

Instance x y Output1 Target1 Output2 Target 2 Data Set

1 -1 -1 0 1 .6 1.0

2 -1 1 1 1 -.3 0

3 1 -1 1 0 1.2 .5

4 1 1 0 0 0 -.2

L1 ? ? ?

SSE ? ? ?

MSE ? ? ?

RMSE ? ? ?
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Gradient Descent Learning: 
Minimize (Maximize) the 
Objective Function

38

Total SSE:

Sum 

Squared

Error

S (t – z)2

0

Error Landscape

Weight Values
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Deriving a Gradient Descent 
Learning Algorithm

Goal is to decrease overall error (or other loss function) each time a 
weight is changed

Total Sum Squared error one possible loss function           E: S (t – z)2

Seek a weight changing algorithm such that           is negative

If a formula can be found then we have a gradient descent learning 
algorithm

Delta rule is a variant of the perceptron rule which gives a gradient 
descent learning algorithm with perceptron nodes

39
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Delta rule algorithm
Delta rule uses (target - net) before the net value goes through the threshold in 
the learning rule to decide weight update

Weights are updated even when the output would be correct

Because this model is single layer and because of the SSE objective function, the 
error surface is guaranteed to be parabolic with only one minima

Learning rate
◦ If learning rate is too large can jump around global minimum
◦ If too small, will get to minimum, but will take a longer time
◦ Can decrease learning rate over time to give higher speed and still attain the 

global minimum (although exact minimum is still just for training set and 
thus…)

40

Dwi = c(t -net)xi
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Batch vs Stochastic Update
To get the true gradient with the delta rule, we need to sum errors over 
the entire training set and only update weights at the end of each epoch

Batch (gradient) vs stochastic (on-line, incremental)
◦ SGD (Stochastic Gradient Descent)

◦ With the stochastic delta rule algorithm, you update after every pattern, just 
like with the perceptron algorithm (even though that means each change 
may not be along the true gradient)

◦ Stochastic is more efficient and best to use in almost all cases, though not all 
have figured it out yet

◦ We’ll talk about this in more detail when we get to Backpropagation

41
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Perceptron rule vs Delta rule
Perceptron rule (target - thresholded output) guaranteed to converge to a 
separating hyperplane if the problem is linearly separable.  Otherwise may 
not converge – could get in a cycle

Singe layer Delta rule guaranteed to have only one global minimum.  Thus, 
it will converge to the best SSE solution whether the problem is linearly 
separable or not.

◦ Could have a higher misclassification rate than with the perceptron rule and a 
less intuitive decision surface – we will discuss this later with regression where 
Delta rules is more appropriate

Stopping Criteria – For these models we stop when no longer making 
progress

◦ When you have gone a few epochs with no significant improvement/change 
between epochs (including oscillations) 

42
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Linearly Separable Boolean 
Functions

d = # of dimensions (i.e. inputs)

43
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Linearly Separable Boolean 
Functions

d = # of dimensions

P = 2d = # of Patterns

44
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Linearly Separable Boolean 
Functions
d = # of dimensions

P = 2d = # of Patterns

2P = 22d
= # of Functions

n  Total Functions Linearly Separable Functions

0  2   2

1  4   4

2  16   14

45
19CST302/NEURAL NETWORKS AND DEEP 

LEARNING/DR.A.SUMITHRA



Linearly Separable Boolean 
Functions
d = # of dimensions

P = 2d = # of Patterns

2P = 22d
= # of Functions

n  Total Functions Linearly Separable Functions

0  2   2

1  4   4

2  16   14

3  256   104

4  65536   1882

5  4.3 × 109  94572

6  1.8 × 1019  1.5 × 107

7  3.4 × 1038  8.4 × 109

46
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Linear Models which are Non-
Linear in the Input Space

⚫So far we have used

⚫We could preprocess the inputs in a non-linear way and do

⚫To the perceptron algorithm it is the same but with more/different 
inputs. It still uses the same learning algorithm. 

⚫For example, for a problem with two inputs x and y (plus the bias), we 
could also add the inputs x2, y2, and x·y

⚫The perceptron would just think it is a 5-dimensional task, and it is linear 
(5-d hyperplane) in those 5 dimensions

◦ But what kind of decision surfaces would it allow for the original 2-d input 
space?

47

   

f (x,w) = sign( wixi
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Quadric Machine
All quadratic surfaces (2nd order)

◦ ellipsoid

◦ parabola

◦ etc.

That significantly increases the number of problems that can be solved

Can we solve XOR with this setup?

48
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Quadric Machine
All quadratic surfaces (2nd order)

◦ ellipsoid

◦ parabola

◦ etc.

That significantly increases the number of problems that can be solved

But still many problem which are not quadrically separable

Could go to 3rd and higher order features, but number of possible 
features grows exponentially

Multi-layer neural networks will allow us to discover high-order features 
automatically from the input space

49
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Simple Quadric Example

What is the decision surface for a 1-d (1 input) problem?

Perceptron with just feature f1 cannot separate the data

Could we add a transformed feature to our perceptron?

50

-3   -2   -1    0   1    2    3

f1
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Simple Quadric Example

Perceptron with just feature f1 cannot separate the data

Could we add a transformed feature to our perceptron?

  f2 = f1
2 

51

-3   -2   -1    0   1    2    3

f1

19CST302/NEURAL NETWORKS AND DEEP 

LEARNING/DR.A.SUMITHRA



Simple Quadric Example

Perceptron with just feature f1 cannot separate the data

Could we add another feature to our perceptron f2 = f1
2 

Note could also think of this as just using feature f1 but now allowing a 
quadric surface to divide the data

◦ Note that f1 not actually needed in this case
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Quadric Machine Homework 
Assume a 2-input perceptron expanded to be a quadric (2nd order) 
perceptron, with 5 input weights (x, y, x·y, x2, y2) and the bias weight

◦  Assume it outputs 1 if  net > 0, else 0

Assume a learning rate c of .5 and initial weights all 0

◦   Dwi = c(t – z) xi

Show all weights after each pattern for one epoch with the following training 
set
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x y Target

0 .4 0

-.1 1.2 1

.5 .8 0

19CST302/NEURAL NETWORKS AND DEEP 

LEARNING/DR.A.SUMITHRA


