Microbes play a fundamental role in the preparation of cheese, contributing to its flavor, texture, and preservation. Here's a breakdown of the key microbes involved in cheese-making:

1. Starter Cultures (Lactic Acid Bacteria):

- Lactic acid bacteria (LAB) are the primary microbes used in cheese-making. They convert lactose (milk sugar) into lactic acid through fermentation, which lowers the pH of the milk.
- Lowering the pH is crucial for coagulation, as it causes the casein proteins in milk to unfold and bind together, forming a gel-like structure. This process is called curdling.
- Common LAB used in cheese-making include:
 - Lactococcus lactis: Commonly used in many types of cheeses, including Cheddar and Gouda.
 - Streptococcus thermophilus: Used in cheeses that require higher temperatures for production, such as Swiss and Parmesan.
 - Lactobacillus species: Various Lactobacillus species contribute to the flavor and texture of cheeses like Emmental and Brie.

2. Rennet (Enzymes):

- Rennet is an enzyme traditionally derived from the stomach lining of young calves, though vegetarian alternatives are now available.
- It plays a crucial role in cheese-making by coagulating the milk proteins, particularly casein, to form curds.
- Chymosin is the main enzyme in rennet that breaks down κ -casein, a protein in milk, to form a network that traps fat and water, creating the curd structure.
- The resulting curds are then cut and cooked to release whey, forming the basis for different types of cheeses.

3. Ripening Cultures (Secondary Microbes):

- After the curds are formed and whey is drained, some cheeses undergo a ripening or aging process where additional microbes are introduced.
- These secondary microbes contribute to the development of flavors and textures over time.
- Examples of ripening cultures include:
 - Penicillium species: Used in blue cheeses like Roquefort and Gorgonzola. They give the cheese its characteristic blue veining and distinct flavor.
 - Geotrichum candidum: Commonly used in soft cheeses like Camembert and Brie, contributing to their white, bloomy rind.
 - Brevibacterium linens: This bacterium is responsible for the orange or red rind on certain cheeses like Limburger and Munster. It also contributes to their characteristic aroma.

4. Role of Microbes in Flavor and Texture:

- The metabolic activities of microbes during fermentation and ripening produce various flavor compounds such as acids, alcohols, esters, and aromatic compounds.
- Different strains of LAB can produce different flavors. For instance, some produce buttery flavors, while others produce more tangy or sharp flavors.
- The breakdown of proteins and fats by enzymes and microbes also contributes to the texture of cheese, creating a wide range from soft and creamy to hard and crumbly.

5. Preservation:

• The acidic environment created by LAB during fermentation helps to preserve the cheese, inhibiting the growth of harmful bacteria and molds.

• Ripened cheeses with their specific microbial communities are less susceptible to spoilage and can be aged for extended periods, developing complex flavors.

In summary, microbes are essential in cheese-making for curdling milk, developing flavors and textures, forming rinds, and preserving the cheese. The selection of specific strains and combinations of microbes is a craft that cheese-makers use to create the diverse array of cheeses found around the world, each with its unique taste, aroma, and appearance.