
Assembly Language
Programming of 8085

Topics

1. Introduction

2. Programming model of 8085

3. Instruction set of 8085

4. Example Programs

5. Addressing modes of 8085

6. Instruction & Data Formats of 8085

1. Introduction

• A microprocessor executes instructions given by
the user

• Instructions should be in a language known to
the microprocessor

• Microprocessor understands the language of 0’s
and 1’s only

• This language is called Machine Language

• For e.g.
01001111

– Is a valid machine language instruction of
8085

– It copies the contents of one of the internal
registers of 8085 to another

A Machine language program to
add two numbers

00111110 ;Copy value 2H in register A

00000010

00000110 ;Copy value 4H in register B

00000100

10000000 ;A = A + B

Assembly Language of 8085

• It uses English like words to convey the
action/meaning called as MNEMONICS

• For e.g.
– MOV to indicate data transfer

– ADD to add two values

– SUB to subtract two values

Assembly language program to add
two numbers
MVI A, 2H ;Copy value 2H in register A

MVI B, 4H ;Copy value 4H in register B

ADD B ;A = A + B

Note:

• Assembly language is specific to a given
processor

• For e.g. assembly language of 8085 is different
than that of Motorola 6800 microprocessor

Microprocessor understands Machine Language only!

• Microprocessor cannot understand a program
written in Assembly language

• A program known as Assembler is used to
convert a Assembly language program to
machine language

Assembly
Language
Program

Assembler
Program

Machine
Language

Code

Low-level/High-level languages

• Machine language and Assembly language are
both
– Microprocessor specific (Machine dependent)

so they are called

– Low-level languages
• Machine independent languages are called

– High-level languages
– For e.g. BASIC, PASCAL,C++,C,JAVA, etc.
– A software called Compiler is required to

convert a high-level language program to
machine code

2. Programming model of 8085

Accumulator

ALU

Flags

Instruction
Decoder

Register Array

Memory Pointer
Registers

Timing and Control Unit

16-bit
Address Bus

8-bit Data
Bus

Control Bus

Accumulator (8-bit) Flag Register (8-bit)

B (8-bit) C (8-bit)

D (8-bit) E (8-bit)

H (8-bit) L (8-bit)

Stack Pointer (SP) (16-bit)

Program Counter (PC) (16-bit)

S

Z AC P CY

16- Lines

Unidirectional

8- Lines

Bidirectional

Overview: 8085 Programming model

1. Six general-purpose Registers

2. Accumulator Register

3. Flag Register

4. Program Counter Register

5. Stack Pointer Register

1. Six general-purpose registers
– B, C, D, E, H, L
– Can be combined as register pairs to

perform 16-bit operations (BC, DE, HL)
2. Accumulator – identified by name A

– This register is a part of ALU
– 8-bit data storage
– Performs arithmetic and logical operations
– Result of an operation is stored in

accumulator

3. Flag Register
– This is also a part of ALU

– 8085 has five flags named

• Zero flag (Z)

• Carry flag (CY)

• Sign flag (S)

• Parity flag (P)

• Auxiliary Carry flag (AC)

• These flags are five flip-flops in flag register

• Execution of an arithmetic/logic operation can
set or reset these flags

• Condition of flags (set or reset) can be tested
through software instructions

• 8085 uses these flags in decision-making
process

4. Program Counter (PC)
– A 16-bit memory pointer register
– Used to sequence execution of program

instructions
– Stores address of a memory location

• where next instruction byte is to be fetched
by the 8085

– when 8085 gets busy to fetch current
instruction from memory
• PC is incremented by one
• PC is now pointing to the address of next

instruction

5. Stack Pointer Register
– a 16-bit memory pointer register

– Points to a location in Stack memory

– Beginning of the stack is defined by loading
a 16-bit address in stack pointer register

3.Instruction Set of 8085

• Consists of

– 74 operation codes, e.g. MOV

– 246 Instructions, e.g. MOV A,B

• 8085 instructions can be classified as

1. Data Transfer (Copy)

2. Arithmetic

3. Logical and Bit manipulation

4. Branch

5. Machine Control

1. Data Transfer (Copy) Operations

1. Load a 8-bit number in a Register

2. Copy from Register to Register

3. Copy between Register and Memory

4. Copy between Input/Output Port and
Accumulator

5. Load a 16-bit number in a Register pair

6. Copy between Register pair and Stack
memory

Example Data Transfer (Copy)
 Operations /

Instructions
1. Load a 8-bit number 4F in

register B

2. Copy from Register B to
Register A

3. Load a 16-bit number
2050 in Register pair HL

4. Copy from Register B to
Memory Address 2050

5. Copy between
Input/Output Port and
Accumulator

MVI B, 4FH

MOV A,B

LXI H, 2050H

MOV M,B

OUT 01H

IN 07H

2. Arithmetic Operations

1. Addition of two 8-bit numbers

2. Subtraction of two 8-bit numbers

3. Increment/ Decrement a 8-bit number

Example Arithmetic
 Operations / Instructions

1. Add a 8-bit number 32H to
Accumulator

2. Add contents of Register B to
Accumulator

3. Subtract a 8-bit number 32H
from Accumulator

4. Subtract contents of Register
C from Accumulator

5. Increment the contents of
Register D by 1

6. Decrement the contents of
Register E by 1

ADI 32H

ADD B

SUI 32H

SUB C

INR D

DCR E

3. Logical & Bit Manipulation
Operations

1. AND two 8-bit numbers

2. OR two 8-bit numbers

3. Exclusive-OR two 8-bit numbers

4. Compare two 8-bit numbers

5. Complement

6. Rotate Left/Right Accumulator bits

Example Logical & Bit Manipulation
 Operations / Instructions

1. Logically AND Register H
with Accumulator

2. Logically OR Register L with
Accumulator

3. Logically XOR Register B
with Accumulator

4. Compare contents of
Register C with Accumulator

5. Complement Accumulator

6. Rotate Accumulator Left

ANA H

ORA L

XRA B

CMP C

CMA

RAL

4. Branching Operations

These operations are used to control the flow
of program execution

1.Jumps
• Conditional jumps

• Unconditional jumps

2.Call & Return
• Conditional Call & Return

• Unconditional Call & Return

Example Branching
 Operations / Instructions

1. Jump to a 16-bit Address
2080H if Carry flag is SET

2. Unconditional Jump

3. Call a subroutine with its 16-bit
Address

4. Return back from the Call

5. Call a subroutine with its 16-bit
Address if Carry flag is RESET

6. Return if Zero flag is SET

JC 2080H

JMP 2050H

CALL 3050H

RET

CNC 3050H

RZ

5. Machine Control Instructions

These instructions affect the operation of the
processor. For e.g.

HLT Stop program execution

NOP Do not perform any operation

4. Writing a Assembly Language Program

• Steps to write a program
– Analyze the problem
– Develop program Logic
– Write an Algorithm
– Make a Flowchart
– Write program Instructions using

Assembly language of 8085

Program 8085 in Assembly language to add two 8-
bit numbers and store 8-bit result in register C.

1. Analyze the problem
– Addition of two 8-bit numbers to be done

2. Program Logic
– Add two numbers

– Store result in register C

– Example

 10011001 (99H) A

+00111001 (39H) D

 11010010 (D2H) C

1. Get two numbers

2. Add them

3. Store result

4. Stop

• Load 1st no. in register D

• Load 2nd no. in register E

3. Algorithm Translation to 8085
operations

• Copy register D to A
• Add register E to A

• Copy A to register C

• Stop processing

4. Make a Flowchart

Start

Load Registers D, E

Copy D to A

Add A and E

Copy A to C

Stop

• Load 1st no. in register D
• Load 2nd no. in register E

• Copy register D to A
• Add register E to A

• Copy A to register C

• Stop processing

5. Assembly Language Program

1. Get two numbers

2. Add them

3. Store result

4. Stop

a) Load 1st no. in register D

b) Load 2nd no. in register E

a) Copy register D to A

b) Add register E to A

a) Copy A to register C

a) Stop processing

MVI D, 2H

MVI E, 3H

MOV A, D

ADD E

MOV C, A

HLT

Program 8085 in Assembly language to add two 8-
bit numbers. Result can be more than 8-bits.

1. Analyze the problem
– Result of addition of two 8-bit numbers can

be 9-bit

– Example

 10011001 (99H) A

+10011001 (99H) B

100110010 (132H)

– The 9th bit in the result is called CARRY bit.

0

• How 8085 does it?
– Adds register A and B

– Stores 8-bit result in A

– SETS carry flag (CY) to indicate carry bit

10011001

10011001

A

B

+

99H

99H

10011001 A1

CY

00110010 99H32H

• Storing result in Register memory

10011001

A

32H1

CY

Register CRegister B

Step-1 Copy A to C

Step-2
a) Clear register B

b) Increment B by 1

2. Program Logic

1. Add two numbers

2. Copy 8-bit result in A to C

3. If CARRY is generated

– Handle it

4. Result is in register pair BC

1. Load two numbers in
registers D, E

2. Add them

3. Store 8 bit result in C

4. Check CARRY flag

5. If CARRY flag is SET

• Store CARRY in
register B

6. Stop

• Load registers D, E

3. Algorithm
Translation to 8085

operations

• Copy register D to A

• Add register E to A

• Copy A to register C

• Stop processing

• Use Conditional
Jump instructions

• Clear register B

• Increment B

• Copy A to register C

4. Make a Flowchart

Start

Load Registers D, E

Copy D to A

Add A and E

Copy A to C
Stop

If
 CARRY

NOT SET
Clear B

Increment B

False

True

5. Assembly Language Program

MVI D, 2H

MVI E, 3H
MOV A, D

ADD E
MOV C, A

HLT

• Load registers D, E

• Copy register D to A

• Add register E to A

• Copy A to register C

• Stop processing

• Use Conditional
Jump instructions

• Clear register B

• Increment B

• Copy A to register C

JNC END

MVI B, 0H

INR B

END:

4. Addressing Modes of 8085

• Format of a typical Assembly language instruction
is given below-

[Label:] Mnemonic [Operands] [;comments]

 HLT

 MVI A, 20H

 MOV M, A ;Copy A to memory location whose
 address is stored in register pair HL

 LOAD: LDA 2050H ;Load A with contents of memory
 location with address 2050H

 READ: IN 07H ;Read data from Input port with
 address 07H

• The various formats of specifying
operands are called addressing modes

• Addressing modes of 8085
1. Register Addressing

2. Immediate Addressing

3. Memory Addressing

4. Input/Output Addressing

1. Register Addressing

• Operands are one of the internal registers
of 8085

• Examples-

MOV A, B

ADD C

2. Immediate Addressing

• Value of the operand is given in the
instruction itself

• Example-

MVI A, 20H

LXI H, 2050H

ADI 30H

SUI 10H

3. Memory Addressing

• One of the operands is a memory location

• Depending on how address of memory
location is specified, memory addressing
is of two types
– Direct addressing

– Indirect addressing

3(a) Direct Addressing

• 16-bit Address of the memory location is
specified in the instruction directly

• Examples-

LDA 2050H ;load A with contents of memory
location with address 2050H

STA 3050H ;store A with contents of memory
location with address 3050H

3(b) Indirect Addressing

• A memory pointer register is used to store
the address of the memory location

• Example-

MOV M, A ;copy register A to memory location
 whose address is stored in register
 pair HL

30HA 20H

H

50H

L

30H2050H

4. Input/Output Addressing

• 8-bit address of the port is directly
specified in the instruction

• Examples-

IN 07H

OUT 21H

5. Instruction & Data Formats

8085 Instruction set can be classified
according to size (in bytes) as

1. 1-byte Instructions

2. 2-byte Instructions

3. 3-byte Instructions

1. One-byte Instructions

• Includes Opcode and Operand in the same byte

• Examples-

Opcode Operand Binary Code Hex Code

MOV C, A 0100 1111 4FH

ADD B 1000 0000 80H

HLT 0111 0110 76H

1. Two-byte Instructions

• First byte specifies Operation Code

• Second byte specifies Operand

• Examples-

Opcode Operand Binary Code Hex Code

MVI A, 32H 0011 1110
0011 0010

3EH
32H

MVI B, F2H 0000 0110
1111 0010

06H
F2H

1. Three-byte Instructions

• First byte specifies Operation Code

• Second & Third byte specifies Operand

• Examples-
Opcode Operand Binary Code Hex Code

LXI H, 2050H 0010 0001
0101 0000
0010 0000

21H
50H
20H

LDA 3070H 0011 1010
0111 0000
0011 0000

3AH
70H
30H

Separate the digits of a hexadecimal numbers

and store it in two different locations
• LDA 2200H ; Get the packed BCD number
• ANI F0H ; Mask lower nibble

 0100 0101 45
1111 0000 F0

0100 0000 40

• RRC
• RRC
• RRC ; Adjust higher digit as a lower digit.
• RRC 0000 0100 after 4 rotations

Contd.

• STA 2300H ; Store the partial result
• LDA 2200H ; Get the original BCD no.
• ANI 0FH ; Mask higher nibble

0100 0100 45
0000 1111 0F

0000 0100 05

• STA 2301H ; Store the result
• HLT ; Terminate program execution

Block data transfer

• MVI C, 0AH ; Initialize counter i.e no. of bytes
 Store the count in Register C, ie ten

• LXI H, 2200H ; Initialize source memory pointer
 Data Starts from 2200 location

• LXI D, 2300H ; Initialize destination memory pointer

BK: MOV A, M ; Get byte from source memory block
 i.e 2200 to accumulator.

• STAX D ; Store byte in the destination
 memory block i.e 2300 as stored in
 D-E pair

•

Contd.

• INX H ; Increment source memory
pointer

• INX D ; Increment destination memory
pointer

• DCR C ; Decrement counter
 to keep track of bytes moved

• JNZ BK ; If counter 0 repeat steps

• HLT ; Terminate program

	Assembly Language Programming of 8085
	Topics
	1. Introduction
	PowerPoint Presentation
	A Machine language program to add two numbers
	Assembly Language of 8085
	Assembly language program to add two numbers
	Microprocessor understands Machine Language only!
	Low-level/High-level languages
	2. Programming model of 8085
	Slide 11
	Overview: 8085 Programming model
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	3.Instruction Set of 8085
	1. Data Transfer (Copy) Operations
	Example Data Transfer (Copy) Operations / Instructions
	2. Arithmetic Operations
	Example Arithmetic Operations / Instructions
	3. Logical & Bit Manipulation Operations
	Example Logical & Bit Manipulation Operations / Instructions
	4. Branching Operations
	Example Branching Operations / Instructions
	5. Machine Control Instructions
	4. Writing a Assembly Language Program
	Program 8085 in Assembly language to add two 8-bit numbers and store 8-bit result in register C.
	3. Algorithm
	4. Make a Flowchart
	5. Assembly Language Program
	Program 8085 in Assembly language to add two 8-bit numbers. Result can be more than 8-bits.
	Slide 34
	Slide 35
	2. Program Logic
	Slide 37
	Slide 38
	Slide 39
	4. Addressing Modes of 8085
	Slide 41
	1. Register Addressing
	2. Immediate Addressing
	3. Memory Addressing
	3(a) Direct Addressing
	3(b) Indirect Addressing
	4. Input/Output Addressing
	5. Instruction & Data Formats
	1. One-byte Instructions
	1. Two-byte Instructions
	1. Three-byte Instructions
	Separate the digits of a hexadecimal numbers and store it in two different locations
	Contd.
	Block data transfer
	Slide 55

