

SNS COLLEGE OF TECHNOLOGY

Coimbatore – 35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

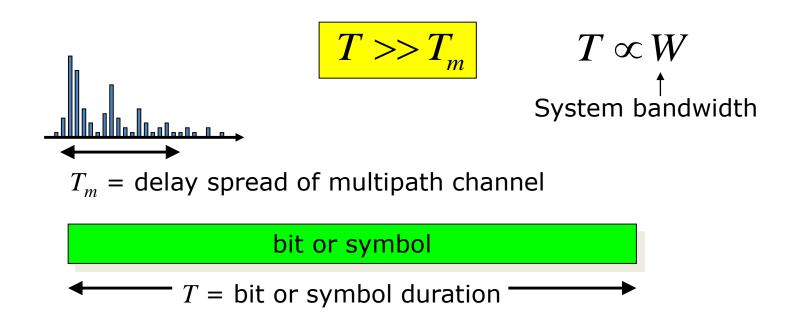
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

16EC401 / Wireless Communication

IV ECE/ VII SEMESTER

Unit IV - MULTIPATH MITIGATION TECHNIQUES

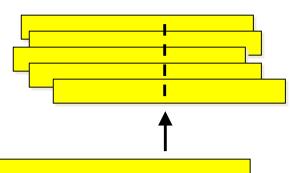
Topic: Error probability in fading channels With diversity reception



Introduction

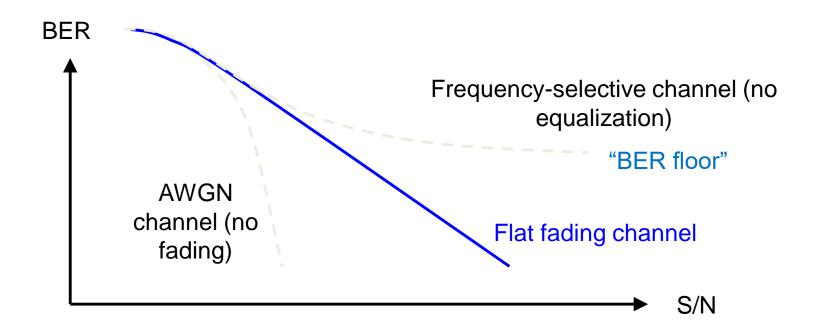
Narrowband system:

Flat fading channel, single-tap channel model, performance enhancement through diversity



Introduction

Adjacent symbols (bits) do not affect the decision process (there is no intersymbol interference).



Received replicas of same symbol overlap in multipath channel

No intersymbol interference at decision time instant

However: Fading (destructive interference) is still possible

Narrowband system: BER performance.

In a flat fading channel (or narrowband system), the CIR (channel impulse response) reduces to a single impulse scaled by a time-varying complex coefficient.

The received (equivalent lowpass) signal is of the form

$$r(t) = a(t)e^{j\phi(t)}s(t) + n(t)$$

We assume that the phase changes "slowly" and can be perfectly tracked

=> important for coherent detection

Activity

- > Imagine folding a paper in half once
- Then take the result and fold it in half again; and so on
- ➤ How many times can you do that?

We assume:

The time-variant complex channel coefficient changes slowly (=> constant during a symbol interval)

The channel coefficient magnitude (= attenuation factor) a is a Rayleigh distributed random variable

Coherent detection of a binary PSK signal (assuming ideal phase synchronization)

Let us define instantaneous SNR and average SNR:

$$\gamma = a^2 E_b/N_0 \qquad \gamma_0 = E\{a^2\} \cdot E_b/N_0$$

Since

$$p(a) = \frac{2a}{E\{a^2\}} e^{-a^2/E\{a^2\}} \qquad a \ge 0,$$

using

$$p(\gamma) = \frac{p(a)}{|d\gamma/da|}$$

we get

Rayleigh distribution

Exponential distribution

$$p(\gamma) = \frac{1}{\gamma_0} e^{-\gamma/\gamma_0} \qquad \gamma \ge 0.$$

The average bit error probability is

$$P_{e} = \int_{0}^{\infty} P_{e}(\gamma) p(\gamma) d\gamma$$

Important formula for obtaining statistical average

where the bit error probability for a certain value of a is

$$P_e\left(\gamma\right) = Q\!\left(\sqrt{2a^2E_b/N_0}\right) = Q\!\left(\sqrt{2\gamma}\right).$$
 We thus get

$$P_{e} = \int_{0}^{\infty} Q\left(\sqrt{2\gamma}\right) \frac{1}{\gamma_{0}} e^{-\gamma/\gamma_{0}} d\gamma = \frac{1}{2} \left(1 - \sqrt{\frac{\gamma_{0}}{1 + \gamma_{0}}}\right).$$

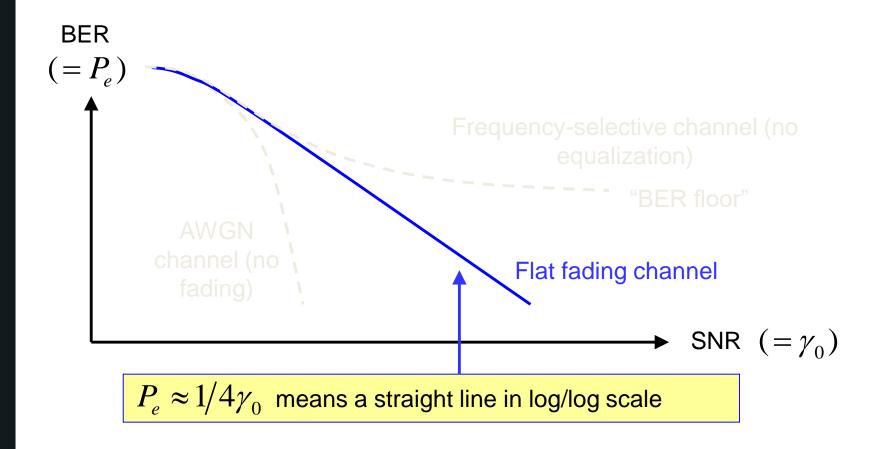
BER vs. SNR

Approximation for large values of average SNR is obtained in the following way. First, we write

$$P_{e} = \frac{1}{2} \left(1 - \sqrt{\frac{\gamma_{0}}{1 + \gamma_{0}}} \right) = \frac{1}{2} \left(1 - \sqrt{1 + \frac{-1}{1 + \gamma_{0}}} \right)$$

Then, we use

$$\sqrt{1+x} = 1 + x/2 + \dots$$


which leads to

$$P_e \approx 1/4\gamma_0$$
 for large γ_0 .

BER vs. SNR

Summary

Modulation $P_e\left(\gamma
ight)$ P_e P_e (for large γ_0)

2-PSK $Q\left(\sqrt{2\gamma}\right)$ $\frac{1}{2}\left(1-\sqrt{\frac{\gamma_0}{1+\gamma_0}}\right)$ $1/4\gamma_0$

DPSK $e^{-\gamma}/2$ $1/(2\gamma_0 + 2)$ $1/2\gamma_0$

2-FSK (coh.) $Q\left(\sqrt{\gamma}\right) \qquad \frac{1}{2}\left(1-\sqrt{\frac{\gamma_0}{2+\gamma_0}}\right) \qquad 1/2\gamma_0$

2-FSK (non-c.) $e^{-\gamma/2}/2$ $1/(\gamma_0 + 2)$ $1/\gamma_0$

Assessment

- ➤ What are the modes of adaptive equalizer?
 - a) Training mode
 - b) Tracking mode
 - c) Both of the mentioned
 - d) None of the mentioned

- ➤ The ISI and adjacent channel interference is removed by
 - a) Cancelling filter
 - b) Port processing equalizer
 - c) Both of the mentioned
 - d) None of the mentioned

THANK YOU