THE WREG REGISTER IN THE PIC

PIC microcontrollers have many registers for arithmetic and logic operations. Among them is the
WREG register. Because there are a large number of registers inside the PIC, we will concentrate on the
widely used register WREG in this section. General-purpose registers and special function registers re
covered later.

WREG register

In the CPU, registers are used to store information temporarily. That information could be a byte of
data to be processed, or an address pointing to the data to be fetched. The vast majority of PIC registers
are 8-bit registers. In the PIC there is only one data type: 8-bit. The range goes from the MSB (most-
significant bit) D7 to the LSB least-significant bit) DO. With an 8-bit data type, any data larger than 8
bits must be broken into 8-bit chunks before it is processed.

The 8-bit WREG register is the most widely used register in the PIC micro controller. WREG stands
for working register, as there is only one. The WREG register is the same as the accumulator in other
microprocessors. The WREG register is used for all arithmetic and logic instructions. To understand the
use of the WREG register, we will show it in the context of two simple instructions: MOVE and ADD.

MOVLW Instruction

The MOVLW instruction moves 8-bit data into the WREG register. It has the following format:

MOVLW K :move literal value K into WREG

K is an 8-bit value that can range from 0-255 in decimal, or 00-FF in hex. The L stands for literal,
which means, literally, a number must be used. In other words, if we see the word literal in any
instruction, we are dealing with an actual value that must be provided right there with the instruction.
This is similar to the immediate value we see in other microprocessors. Notice that in MOVLW, the
letter L (literal) comes first and then the letter W (WREG), which means "move a literal value to
WREG, " the destination. The following instruction loads the WREG
register with a literal value of 25H (i.e., 25 in hex).

MOVLW 25H ; move value 25H into WREG (WREG = 25H)

The following instruction loads the WREG register with value 87H (87 in hex).

MOVLW 87H ; load 87H into WREG (WREG = 87H)

The following instruction loads the WREG register with value 15H (15 in hex and 21 in decimal).

MOVLW 15H ; load 15H into WREG (WREG = 15H)

ADDLW Instruction
The ADDLW instruction has the following format:

ADDLW K ; ADD literal value K to WREG

The ADD instruction tells the CPU to add the literal value K to register WREG and put the result back
in the WREG register. Notice that in ADDLW, first comes the letter L (literal) and then the letter W
(WREG), which means "add a literal value to WREG," the destination. To add two numbers such as
25H and 34H, one can do the following:

MOVLW 25H ; load 25H into WREG
ADDLW 34H ; add value 34 toW (W =W + 34H)

Executing the above lines results in WREG = 59H (25H + 34H = 59H)
Figure 2-1 shows the literal value and WREG being fed to the PIC ALU.

8-BIT LITERAL (FROM

INSTRUCTION WORD)
8-BIT WIDE
WREG REGISTER
CARRY BIT
STATUS
REGISTER
ALU

N,OV,Z,DC,C FLAGS

8-BIT WIDE

Figure 2-1. PIC WREG and ALU Using Literal Value

The following program will add values 12H, 16H, 31H, and 43H:

MOVLW
ADDLW
ADDLW
ADDLW

12H ; load value 12H into WREG (WREG = 12H)
16H ;add 16 to WREG (WREG = 28H)
11H ;add 11 to WREG (WREG = 39H)
43H ; add 43 to WREG (WREG = 7CH)

When programming the WREG register of the PIC microcontroller with a
literal value, the following points should be noted:

Values can be loaded directly into the WREG register. There is no need for a preceding
pound sign or dollar sign to indicate that a value is an immediate value as is the case with
some other microcontrollers.

If values 0 to F are moved into an 8-bit register such as WREG, the rest of the bits are
assumed to be all zeros. For example, in "MOVLW 5H" the result will be WREG = 05H;
that is, WREG = 00000101 in binary.

e Moving a value larger than 255 (FF in hex) into the WREG register will truncate the
upper byte and cause a warning in the .err file.

MOVLW 7F2H ;ILLEGAL 7F2H > 8 bits (FFH), becomes F2H
MOVLW 456H ;ILLEGAL 456H > FFH, becomes 56H
MOVLW 60ASH ; ILLEGAL but becomes ASH

SECTION 2.2: THE PIC FILE REGISTER

The PIC microcontroller has many other registers in addition to the WREG register. They are called
data memory space to distinguish them from program (code) memory space. The data memory space in
PIC is a read/write (static RAM) memory. In the PIC microcontroller literature, the data memory is also
called the
file register.

File register (data RAM) space allocation in PIC

The file register is read/write memory used by the CPU for data storage, and registers for internal use
and functions. As with WREG, we can perform arithmetic and logic operations on many locations of the
file register data RAM. The PIC microcontrollers' file register size ranges from 32 bytes to several
thousand bytes depending on the chip. Even within the same family, the size of the file register data
RAM varies from chip to chip. Notice that the file register data RAM has a byte-size width, just like
WREG. The file register data RAM in PIC is divided into two sections:

e Special Function Registers (SFR)
e General-Purpose Registers (GPR)

SFRs (Special Function Registers)

The Special Function Registers (SFRs) are dedicated to specific functions such as ALU status, timers,
serial communication, 1/0 ports, ADC, and so on. The function of each SFR is fixed by the CPU
designer at the time of design because it is used for control of the microcontroller or peripheral. The PIC
SFRs are 8-bit registers. The number of locations in the file register set aside for SFR depends on the pin
numbers and peripheral functions supported by that chip. That number can vary from chip to chip even
among members of the same family. Some have as few as 7 (8-pin PIC12C508 with no on-chip analog-
to-digital converter) and some have over a hundred (40-pin PIC18F458 with on-chip analog-to digital
converter). For example, the more timers we have in a PIC chip, the more SFR registers we will have.

F80h] PORTA
F81th] PORTB
F82h| PORTC
F83h] PORTD
F84h| PORTE
F85h -—
F86h -_—
F87h —
F88h e
F8%h LATA
FBAh LATE
F8Bh LATC
F8Ch LATD
F8Dh LATE
F8Eh —
F8Fh -
F90h ——
F91h —
F92h| TRISA
F93h} TRISB
F94h| TRISC
F95h] TRISD
Fo96h] TRISE
F87h —
F88h —
F9%h —
F9Ah -—-
F9Bh —_
F8Ch -
F8Dh PIE1
FSEh PIR1
FSFh IPR1

Faoh[PIEZ
FAth| PIR2
Fazh| IPR2
FAn| —
FAsh| —
FAsh| —
FA6h| —
FATR| —
FASh| —
FAOh| —
FAAR[—
FABh| RCSTA
FACh[TXSTA
FADh| TXREG
FAEh| RCREG
FAFh| SPBRG
FBOh| —
FB1h| T3CON
Fe2h| TMR3L
FB3h| TMRGH
FBéh| —
FBSh| —
FBoh| —
FB7h| —
FBSh| —
FBOh| —
FBAh | CCP2CON
FBBh| CCPR2L
FBCh| CCPR2H
FBDh | CCP1CON
FBER| CCPRIL
FBFh| CCPRIH

* - These are not physical registers.

FCOh
FC1h
FC2h
FC3h
FC4h
FC5h
FC6h
FC7h
FC8h
FCSh
FCAh
FCBh
FCCh
FCDh
FCEh
FCFh
FDOh
FD1h
FD2h
FD3h
FD4h
FD5h
FD6h
FD7h
FD&h
FDgh
FDAh
FDBh
FDCh
FDDh
FDEh
FDFh

ADCON1

ADCONO

ADRESL

ADRESH

SSPCON2

SSPCON1

SSPSTAT

SSPADD

SSPBUF

T2CON

PR2

TMR2

T1CON

TMR1L

TMR1H

RCON

WDTCON

LVDCON

OSCCON

TOCON

TMROL

TMROH

STATUS

FSR2L

FSR2H

PLUSW2

PREINC2

POSTDEC2

POSTINC2

INDF2

FEOh
FEth
FEZh
FE3h
FE4h
FESh
FE6h
FE7h
FE8h
FESh
FEAR
FEBh
FECh
FEDh
FEEh
FEFh
FFOh
FF1h
FF2h
FF3h
FF4h
FF5h
FF6h
FF7h
FF8h
FFSh
FFAh
FFBh
FFCh
FFDh
FFEh
FFFh

BSR

FSR1L

FSR1H

PLUSWA1

PREINC1

POSTDECA1

POSTINCA1

INDF1

WREG

FSROL

FSROH

PLUSWO

PREINCO

POSTDECO

POSTINCO

INDFO

INTCON3

INTCONZ2

INTCON

PRODL

PRODH

TABLAT

TBELPTRL

TBLPTRH

TBLPTRU

PCL

PCLATH

PCLATU

STKPTR

TOSL

TOSH

TOSU

Figure 2-4. Special Function Registers of the PIC18 Family.

SUM EQU

ORG

END

10H

OH

MOVLW 25H
ADDLW 0x34
ADDLW 11H
ADDLW D'18!
ADDLW 1CH
ADDLW
MOVWF SUM
HERE GOTO HERE

;PIC Assembly Language Program To Add Some Data.
;jstore SUM in fileReg location 10H.

;RAM loc 10H for SUM

;start at address 0
;WREG = 25

34H to WREG
11H to WREG

;add
;add

W
W

B'00000110"' ;W

= W + 12H = 7CH

W + 1CH = 98H
W+ 6

= 9EH

;save the SUM in loc 10H
;stay here forever
;end of asm source file

Program 2-1: Sample of an Assembly Language Program

Table 6-1: Selected PIC18 Special Function Register (SFR) Addresses

Symbol Name Address
WREG Working register FESH
PORTA Port A F80H
PORTB Port B F81H
PORTC Port C F82H
LATA Output latch, Port A F89H
LATB Output latch, Port B FSAH
LATC Output latch, Port C F8BH
TRISA Data direction, Port A F92H
TRISB Data direction, Port B F93H
TRISC Data direction, Port C F94H
INDFO Indirect addressing register 0 FEFH
INDF1 Indirect addressing register 1 FETH
FSROL Indirect data memory address pointer 0 low FE9H
FSROH Indirect data memory address pointer 0 high FEAH
FSRIL Indirect data memory address pointer 1 low FEIH
FSR1H Indirect data memory address pointer 1 high FE2H
PLUSWO Indirect indexed address register FEBH
PREINCO Preincrement register 0 FECH
POSTDECO _ Post-decrement register 0 FEDH
POSTINCO Post-increment register 0 FEEH
TBLPTRL Table pointer, low byte FF6H
TBLPTRH Table pointer, high byte FF7H
TBLPTRU Table pointer, upper byte FF8H
TABLAT Program memory table latch FF5H
STATUS Status flag byte FD8H

SFR registers and their addresses

PIC 18 registers for Ports A, B, and so on are part of the group of registers commonly referred to as
SFRs (special function registers). There are many special function registers and they are widely used.

The SFRs can be accessed by their names (which is much easier) or by their addresses. For example,
Port B has address F81H, and Port C the address F82H, as shown in Table 6-1. Notice how the
following pairs of instructions mean the same thing:

MOVWF 0xF81l ;is the same as

MOVWF PORTB ;which means copy WREG into Port B
CLRF 0xF82 ;is the same as

CLRF PORTC ;which means clear Port C

BSF 0xFDS8,0 ;is the same as

BSF STATUS,C ;which make C = 1

The following two points should be noted about special function registers (SFRs) addresses:

1. The special function registers have addresses between F80H and FFFH. These addresses are below
FFFH, because the PIC18 starts assigning SFR addresses at FFFH and goes down until all SFRs

supported by that chip are assigned. Not all the members of the PIC18 family have the same peripherals;
therefore, the number of locations used for SFRs varies among the PI1C18 family.

2. Not all the address space of F80H to FFFH is used by the SFR. The unused .locations F80H to FFFH
are reserved and must not be used by the PICI8 programmer.

Regarding direct addressing mode in the PIC18, notice the following

SECTION 6.2: REGISTER INDIRECT ADDRESSING MODE

We can use register direct or register indirect addressing modes to access data stored in the general
purpose RAM section of the file register. In the last section we showed how to use direct addressing
mode, which is also called register direct. The register indirect addressing mode is a very important
addressing mode in the PIC 18. This topic will be discussed thoroughly in this section.

Register indirect addressing mode

In the register indirect addressing mode, a register is used as a pointer to
the data RAM location. In the PIC18, three registers are used for this purpose:
FSRO, FSR1, and FSR2. FSR stands for file select register and must not be con-
fused with SFR (special function register). The FSR is a 12-bit register allowing
access to the entire 4096 bytes of data RAM space in the PIC18. We use LFSR
(load FSR) to load the RAM address. In other words, when FSRx are used as
pointers, they must be loaded first with the RAM addresses as shown below.

LFSR 0, 0x30 ;load FSRO with 0x30
LFSR 1, 0x40 ;load FSR1 with 0x40
LFSR 2, Ox6F ;load FSR2 with Ox6F

Because FSRO, FSR1, and FSR2 are 12-bit registers they cannot fit into the
SFR address space unless they are split into pieces of an 8-bit size. That is exact-
ly what PIC18 has done. The FSR registers have the low-byte and high-byte parts
called FSRxL and FSRxH, as shown in the SFR table of Table 6-1. In Table 6-1
we see FSROL and FSROH, representing the low and high parts of the 12-bit FSR0
register. Note that the FSRxH is only 4-bit and the upper 4 bits are not used.
Another register associated with the register indirect addressing mode is the INDF
(indirect register). Each of the FSR0, FSR1, and FSR2 registers has an INDF reg-
ister associated with it, and these are called INDF0O, INDF1, and INDF2. When we
move data into INDFx we are moving data into a RAM location pointed to by the
FSR. In the same way, when we read data from the INDF register, we are reading
data from a RAM location pointed to by the FSR. This is shown below.

LFSR 0, 0x30 ;FSRO = 30H RAM location pointer

MOVWF INDFO jcopy contents of WREG into RAM
;location whose address is held by
;12-bit FSRO register

Advantages of register indirect addressing mode

One of the advantages of register indirect addressing mode is that it makes accessing data
dynamic rather than static, as with direct addressing mode. Example 6-2 shows three cases of
copying 55H into RAM locations 40H to 45H. Notice in solution (b) that two instructions are
repeated numerous times. We can create a loop with those two instructions as shown in
solution (¢). Solution (¢) is the most efficient and is possible only because of the register
indirect addressing mode. In Example 6-2, we must use "INCF FSROL, F" to increment the
pointer because there is no such instruction as "INCF FSRO, F". Looping is not possible in
direct addressing mode, and that is the main difference between the direct andregister indirect
addressing modes. For example, trying to send a string of data located in consecutive
locations of data RAM is much more efficient and dynamic using register indirect addressing
mode thanusing direct addressing mode. See Example 6-3.

	THE WREG REGISTER IN THE PIC
	WREG register
	MOVLW Instruction
	ADDLW Instruction
	SECTION 2.2: THE PIC FILE REGISTER
	File register (data RAM) space allocation in PIC
	SFRs (Special Function Registers)
	SFR registers and their addresses
	SECTION 6.2: REGISTER INDIRECT ADDRESSING MODE
	Advantages of register indirect addressing mode

