

SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 19ECB212 – DIGITAL SIGNAL PROCESSING

II YEAR/ IV SEMESTER

UNIT 1 – DISCRETE FOURIER TRANSFORM

TOPIC – Overlap Save & Overlap Add Method

3/3/2024

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

Filtering of long data sequence is Slow

SECTIONED CONVOLUTION

- The response of an LTI system for any arbitrary input is given by linear convolution of the input and the impulse response of the system
- The input sequence or impulse response sequence is very much larger than the other, then it is very difficult to compute the linear convolution for the following reasons:
- The entire sequence should be available before convolution can be carried out. This makes long delay in getting the output
- Large amounts of memory is required to store the sequences

SECTIONED CONVOLUTION

In this technique the larger sequence is sectioned (or splitted) into the

size of smaller sequence

- Then the linear convolution of each section of longer sequence and the smaller sequence is performed
- The output sequences obtained from the convolutions of all the sections are combined to get the overall output sequence

CIRCULAR CONVOLUTION

- There are two methods of sectioned convolutions. They are \bullet
- **Overlap add method** \bullet
- **Overlap save method** \bullet

3/3/2024

3/3/2024

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

y₃(n)

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

Output Data

3/3/2024

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

y₃(n)	

- Step 1: Divide the longer sequence into small sequences x(n) – Long sequence and h(n) – Small Sequence Then divide x(n) into $x_1(n)$, $x_2(n)$, $x_3(n)$
- Length of $x_1(n)$ (or) Length of $x_2(n)$ (or) Length of $x_3(n)$ = Length of h(n)....
- Step 2: Find $y_1(n)$ then $y_1(n) = x_1(n) * h(n)$
- Step 3: Find $y_2(n), y_3(n)$
- Step 4: Combine all the outputs $y_1(n)$, $y_2(n)$, $y_3(n)$

- Find the linear convolution x(n) = {1,2,3,4,4,3,2,1} and h(n) = {-1,1} using Overlap Add Method:
- **Step 1:** Divide longer sequence into small subsequences
- x(n) = Longer sequence and h(n) = Small sequenceullet

x(n) is divided as below

- $x_1(n) = \{1,2\}, x_2(n) = \{3,4\}, x_3(n) = \{4,3\}, x_4(n) = \{2,1\}$
- Length of $x_1(n)$ or $x_2(n)$ or $x_3(n)$ or $x_4(n) =$ Length of h(n)

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

Step 4 : Combine all the outputs :

n	0	1	2 ·	3	4	5	6	7	8
y ₁ (n)	. –1	-1	2						
y ₂ (n)			-3	-1	4				
y ₃ (n)					4	1	3		
y ₄ (n)							-2	1	1
	-1	-1	-1	-1	0	1	1	1	1
$y(n) = \{-1, -1, -1, -1, 0, 1, 1, 1, 1\}$									

Find the linear convolution x(n) = {1,2,3,4,4,3,2,1} and h(n) = {-1,1} using **Overlap Save Method:**

Find $y_1(n)$:

 $x_1(n) = \{1, 2, 3\}$

 $h(n) = \{-1, 1, 0\}$

 $y_1(n) = x_1(n) \odot h(n)$

circular convolution is done using Matrix Method

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$
$$\begin{bmatrix} y_1(n) = [2, -1, -1] \end{bmatrix}$$

3/3/2024

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

+3+0+1+0+2+0

Find $y_2(n)$: $x_2(n) = \{3, 4, 4\}$ $h(n) = \{-1, 1, 0\}$ $y_2(n) = x_2(n) \odot h(n)$ $\begin{vmatrix} 3 & 4 & 4 \\ 4 & 3 & 4 \end{vmatrix} \begin{vmatrix} -1 \\ 1 \\ -4 + 3 + 0 \end{vmatrix} = \begin{vmatrix} -3 + 4 + 0 \\ -4 + 3 + 0 \\ -1 \\ -1 \end{vmatrix} = \begin{vmatrix} 1 \\ -4 + 3 + 0 \\ -1 \\ -1 \end{vmatrix}$ 0 $y_2(n) = [1, -1, 0]$

Find $y_3(n)$: $x_3(n) = \{4, 3, 2\}$ $h(n) = \{-1, 1, 0\}$ $y_3(n) = x_3(n) \odot h(n)$ 3 2 $y_3(n) = [-2, 1, 1]$

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

Step 3 : Find y(n) :

Here, original h(n) length = 2.

So, 1 sample is overlapped, and 1 sample is discarded.

n	0	1	2	3	4	5	6	7	8	9
y ₁ (n)	2	-1	-1				-			
y ₂ (n)			\mathbf{X}	-1	0					
y ₃ (n)					X	1	1			
y ₄ (n)							×	1	1	
	*	-1	-1	-1	0	1	1	1	1	

 $\times \rightarrow$ indicates that the sample is discarded.

 $y(n) = \{*, -1, -1, -1, 0, 1, 1, 1, 1\}$

DIFFERENCE B/W OVERLAP ADD & OVERLAP SAVE METHOD

S.No.	Overlap Add Method	0
1	Linear convolution of each section of longer sequence with small sequence is performed	Circular co longer seq is performe
2	Zero padding is not required	Zero padd input seq sequence
3	The overlapped samples in output are added to get overall output	In the outp First N ₂ -1 s

Overlap Save & Overlap Add Method/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

Overlap Save Method

convolution of each section of quence with smaller sequence ned

ding is required to convert quences to size of output

put the last N₂-1 sampling (or) samples are discarded

APPLICATIONS

Communication Signal Processing

To remove noise which are added during transmission can be removed * using filter where the operation involved is convolution

ASSESSMENT

- List the methods involved to compute sectioned convolution.
- Mention some applications of sectioned Convolution. 2.
- 3. What is meant by sectioned Convolution.
- Find the linear convolution $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ and $h(n) = \{-1, 1\}$ using Overlap 4.

Save Method

- 5. What is the difference between overlap add and overlap save method.
- Determine linear convolution $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ and $h(n) = \{-1, 1\}$ using 6. **Overlap Add Method**

THANK YOU

3/3/2024

