
SNS COLLEGE OF TECHNOLOGY

(Autonomous)

MCA- Internal Assessment –III (Dec 2023)

Academic Year 2023-2024(Odd) / ThirdSemester

19CAT701 –Mobile Application Development

Time: 11/2 Hours Maximum Marks: 50

Answer All Questions

Answer key
PART - A (5 x 2 = 10 Marks)

 CO BL

1 Justify why SQLite database is better option of Storing the data in

Android

Structured Data Management

Efficient Querying

Offline Capabilities

Performance

Security

Integration

CO4 Ana

2 Classify the types of sensors available in Android devices

Motion sensors

Environmental sensors

Position sensors

Fingerprint sensor

Microphone
Camera

CO4 Ana

3 Define geocoding

A Geocode is a set of latitude and longitude coordinates that represents a

specific geographic place such as a landmark, street address, place name, or

location.

CO5 Und

4 Examine the Ionic Grid system used for positioning the components on

the page

1. Grid: Container for all rows and columns, occupying the full width by
default.

2. Rows: Horizontal groups of columns, aligning them neatly. Content resides

within columns, and only columns can be direct children of rows.

3. Columns: Divide rows into sections, sized based on the specified "size"

property (out of 12 columns per row).

CO5 Ana

5 Evaluate the features of SCSS in IONIC framework
Variables

Nesting

Mixins

Partials

Imports

Functions and Operator

Control Directives

CO5 Und

B

PART - B (2 x 13 = 26,1 X 14 = 14Marks)

6 (a) Critique existing animation libraries and frameworks for

Android.
Android's Built-in Animation Framework:

 Strengths: Simple to use, well-documented, integrates seamlessly

with the Android framework.
 Weaknesses: Limited animation capabilities, requires verbose code

for complex animations, lacks advanced features like physics

simulation or vector animation.
2. Lottie:

 Strengths: Lightweight, efficient, supports vector animations for

scalability and crisp rendering, large library of pre-built animations.
 Weaknesses: Limited interactivity compared to code-based

solutions, requires importing JSON files for custom animations,

learning curve for advanced usage.
3. Nine Old Androids (NAA):

 Strengths: Powerful and flexible, supports complex animations with

physics simulation and advanced effects, extensive customization

options.
 Weaknesses: Steep learning curve, requires writing more code

compared to other libraries, can be performance-intensive on older

devices.
4. Reanimated:

 Strengths: Declarative animation API with React-like syntax,

simplifies complex animations, integrates well with React Native

development.
 Weaknesses: Limited adoption and community support compared to

other options, may not be suitable for all animation needs.
5. MotionLayout:

 Strengths: Enables creation of fluid, constraint-based animations for
UI elements, simplifies transitions between layouts.

 Weaknesses: Requires understanding ofConstraintLayout, can be

challenging to master for complex animations.

CO4 Eva

 (OR)
 (b) Recommend improvements to the design of Location object or

location awareness APIs.

 Purpose: Represents the current URL of a document or

window within a web browser.

 Properties:

o href: Returns the full URL of the current page.

o protocol: Specifies the protocol used (e.g., "http:").

o hostname: Indicates the domain name of the server.

o pathname: Provides the path portion of the URL.

o search: Contains the query string (if any).

o hash: Contains the fragment identifier (if any).

 Methods:

o assign(): Loads a new document.

o replace(): Replaces the current document with a new

CO4 Eva

one, without creating a new history entry.

o reload(): Reloads the current document.

7 (a) Implement basic functionalities using HTML, CSS, and

JavaScript within a hybrid mobile development framework.

1. Choose a Framework:

Popular choices include:

 React Native: Powerful and flexible, but might have a steeper

learning curve.

 Ionic Framework: Beginner-friendly with pre-built UI

components and extensive documentation.

 Apache Cordova/PhoneGap: Open-source and platform-

agnostic, but offers less built-in functionality.

2. Create Your App Structure:

 HTML: Use index.html for the main layout and

content, linking to separate HTML files for different screens.

 CSS: Define styles for different UI elements in a

separate style.css file.

 JavaScript: Implement logic and interactivity in a

separate app.js file.

3. Code Your Basic Functionalities:

 Navigation: Use Javascript to control transitions between

screens.

 Input Handling: Handle user interactions with

buttons, forms, and other elements.

 Data Display: Show data from local storage, APIs, or external

sources.

 Device Access: Leverage Cordova plugins or framework-

specific APIs to access native features like camera, GPS, etc.

CO5 App

 (OR)
 (b) Create a simple IONIC UI with a card and a button, utilizing

appropriate CSS components for styling and layout.

1. Set up Ionic Project:

 Ensure you have Ionic CLI installed: npm install -g @ionic/cli

 Create a new Ionic project: ionic start myCardApp blank

 Navigate to the project directory: cd myCardApp

2. Generate Card Component:

 Create a card component: ionic generate component card

3. Structure the Card Component:

 In card.component.html:

HTML

<ion-card>

 <ion-card-header>

 <ion-card-title>Card Title</ion-card-title>

 </ion-card-header>

 <ion-card-content>

 </ion-card-content>

CO5 App

 <ion-card-footer>

 <ion-button expand="full">Button Text</ion-button>

 </ion-card-footer>

</ion-card>

Use code with caution. Learn more

content_copy

4. Style the Card with CSS:

 In card.component.scss:

SCSS

ion-card {

 margin: 10px;

 border-radius: 10px;

 box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.15);

}

ion-card-header {

 background-color: #f5f5f5;

 padding: 10px;

}

ion-card-title {

 font-weight: bold;

 font-size: 18px;

}

ion-card-content {

 padding: 15px;

}

ion-button {

 background-color: #007bff; /* Primary Ionic color */

 color: white;

}

Use code with caution. Learn more

content_copy

5. Import and Use the Card Component:

 In app.component.html:

HTML

<ion-app>

 <ion-content>

 <app-card></app-card>

 </ion-content>

</ion-app>

Use code with caution. Learn more

content_copy

6. Run the App:

 Start the development server: ionic serve

This will create a simple Ionic UI with a card, featuring a title, content

area, and a full-width button. The card is styled with rounded corners,

https://bard.google.com/faq#coding
https://bard.google.com/faq#coding
https://bard.google.com/faq#coding

a shadow, and a light header. The button has a primary Ionic color.

(a) You're a developer working on a mobile app for tourists visiting a new city.

The app utilizes location awareness to provide helpful information and

suggestions based on the user's current location.

Imagine a tourist, Sarah, is exploring the city and gets lost. Her phone

battery is low, and she doesn't have access to Wi-Fi. How can your app

utilize location awareness to help Sarah find her way back to her hotel or a

safe location?

Consider:

What features can your app offer to help Sarah in this situation?

How can location awareness be used to provide relevant information like

nearby landmarks, public transportation options, or emergency services?

Offline Maps and Navigation:

 Downloadable maps of the city that work even without internet access.

 Turn-by-turn navigation using GPS to guide Sarah back to her hotel or a

safe location like a police station.

 Points of interest (POIs) like landmarks and ATMs marked on the map

for reference.

2. Location-based Information and Assistance:

 Identify Sarah's current location using GPS and display nearby

landmarks, streets, and intersections.

 Show walking and cycling routes to nearby safe locations, considering

battery level.

 Emergency contact information for local police, ambulance, and tourist

helplines.

 Pre-saved offline contact details of the hotel or a local friend/family

member.

3. Battery Optimization and Resource Management:

 Display battery level prominently and offer battery-saving tips like

reducing screen brightness.

 Prioritize essential features like navigation and emergency information.

 Allow downloading offline maps and POIs in advance to minimize data

usage during navigation.

4. Additional Helpful Features:

 Offline translation tools to communicate with locals if needed.

 Currency converter and local payment options information.

 SOS button that sends an alert with Sarah's location to pre-selected

emergency contacts.

 Community forum or chat feature for tourists to connect and ask for

help.

Location Awareness in Action:

 As Sarah walks, the app continuously updates her location and displays

it on the map.

 Nearby landmarks, streets, and POIs are highlighted, helping her orient

herself.

 If Sarah is near a bus stop or metro station, the app displays public

transportation options with estimated arrival times.

CO4 App

 If her battery is critically low, the app suggests the nearest safe location

like a police station or a well-lit area.

 (Or)

(b) A popular live streaming app experiences a sudden spike in dropped live

streams and audio/video glitches during a high-profile event. Users report

buffering, freezes, and complete disconnects. The issue occurs across

various device models and network conditions.

Questions:

As a developer, what steps would you take to diagnose the root cause of the

live stream disruptions?

How would you design a real-time monitoring system to identify and

prevent future performance issues during live events?

Immediate Actions:

1. Gather Data:

o Analyze server logs for errors, spikes, or drops in activity.

o Collect real-time data from affected devices on video/audio

quality, bitrate, frame rate, and buffering times.

o Monitor network infrastructure for bottlenecks or outages.

2. Isolate the Problem:

o Correlate user reports with server data to identify affected

regions, platforms, and content providers.

o Test streaming with different resolutions and bitrates to pinpoint

potential limitations.

o Divide the system into components (encoders, servers, CDN)

and test each individually to isolate the failure point.

Deeper Investigation:

1. Server Resources:

o Check CPU, memory, and network utilization on streaming

servers.

o Identify any resource contention or bottlenecks during the event.

o Analyze database performance and query execution times.

2. Content Delivery Network (CDN):

o Monitor CDN edge locations for high load or outages.

o Investigate cache hit/miss ratios and content distribution across

network zones.

o Evaluate CDN routing efficiency and potential congestion

points.

3. Client-side Issues:

o Analyze app logs on various devices for errors or performance

problems.

o Update and test the app on different platform versions.

o Collaborate with device manufacturers to identify potential

incompatibilities.

Communication and Mitigation:

 Keep users informed: Provide updates on the situation and progress of

the investigation.

CO5 App

 Implement temporary measures: Reduce video resolution or bitrate to

relieve server load.

 Prepare rollback plans: Be ready to revert to previous configurations if

necessary.

Real-time Monitoring System for Future Events

1. Performance Metrics:

o Track server resource utilization (CPU, memory, network) in

real-time.

o Monitor CDN health: edge server load, cache hit/miss

ratios, network latency.

o Collect client-side data: buffering times, frame rate, video/audio

quality metrics.

2. Alerting and Thresholds:

o Set alerts for critical metrics exceeding defined thresholds.

o Notify developers on potential resource exhaustion or

performance degradation.

o Prioritize alerts based on severity and potential impact.

3. Dashboard and Visualization:

o Provide a real-time dashboard for live event monitoring.

o Visualize key metrics across servers, CDN, and client devices.

o Enable proactive analysis to identify trends and predict potential

issues.

4. Automated Actions:

o Implement automatic scaling of server resources based on real-

time demand.

o Configure CDN failover mechanisms to redirect traffic in case of

outages.

o Trigger notifications and workflows for faster reaction to critical

events.

