

SNS COLLEGE OF TECHNOLOGY

(Autonomous)

MCA- Internal Assessment –II (Nov 2023)

Academic Year 2023-2024(Odd) / Third Semester

19CAT701 –Mobile Application Development

 Time: 11/2 Hours Maximum Marks: 50

Answer Key

PART - A (5 x 2 = 10 Marks)

 CO BL

1 Quote the term Intent?
 An Intent is a messaging object you can use to request an action from
another app component.

CO2 Und

2 Predict the purpose of AsyncTask
 AsyncTask enables proper and easy use of the UI thread. This class allows
performing background operations and publishing results on the UI thread

without having to manipulate threads and/or handlers.

CO2 Ana

3 Show how Broadcast Receiver is implemented?
 Broadcast in android is the system-wide events that can occur when the

device starts, when a message is received on the device or when incoming calls

are received, or when a device goes to airplane mode, etc.

CO3 Ana

4 Generalize the use of Android Telephony APIs.
 The telephony API is used to among other things monitor phone
information including the current states of the phone, connections, network etc.

CO3 App

5 Show your understanding on SQLite.
 SQLite is an open-source, zero-configuration, self-contained, stand-
alone, transaction relational database engine designed to be embedded into an

application.

CO3 Und

PART - B (2 x 13 = 26, 1 X 14 = 14 Marks)

6 (a) Briefly discuss the use of Notifications in Android mobile apps.

1. Small icon: required; set using setSmallIcon().

2. App name: provided by the system.

3. Time stamp: provided by the system, but you can override it
using setWhen() or hide it using setShowWhen(false).

4. Large icon: optional; usually used only for contact photos. Don't use
it for your app icon. Set using setLargeIcon().

5. Title: optional; set using setContentTitle().

6. Text: optional; set using setContentText().

CO2 Ana

 (OR)
 (b) Analyze how technology has influenced the evolution of services

throughout their life cycle.

1. Conceptualization and Design:
 Digital Tools and Prototyping: Advanced software tools and

CO2 Ana

B

https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/components/fundamentals#Components
https://developer.android.com/reference/androidx/core/app/NotificationCompat.Builder#setSmallIcon(int)
https://developer.android.com/reference/androidx/core/app/NotificationCompat.Builder#setWhen(long)
https://developer.android.com/reference/androidx/core/app/NotificationCompat.Builder#setShowWhen(boolean)
https://developer.android.com/reference/androidx/core/app/NotificationCompat.Builder#setLargeIcon(android.graphics.Bitmap)
https://developer.android.com/reference/androidx/core/app/NotificationCompat.Builder#setContentTitle(java.lang.CharSequence)
https://developer.android.com/reference/androidx/core/app/NotificationCompat.Builder#setContentText(java.lang.CharSequence)

technologies such as CAD (Computer-Aided Design), simulations,

and virtual reality have revolutionized the conceptualization and

design phase. They enable designers and service providers to
create, visualize, and refine service concepts in more detail,

thereby ensuring better alignment with user needs and

preferences.

2. Development and Implementation:
 Automation and Efficiency: Technological advancements have

automated numerous processes in service development,

significantly enhancing efficiency and reducing time-to-market.
Tools like AI, machine learning, and automated testing streamline

development phases, enabling faster iterations and improved

quality.

3. Delivery and Accessibility:
 Online Platforms and Mobility: The advent of the internet and

mobile technology has reshaped how services are delivered,

making them accessible remotely and conveniently. E-commerce,
mobile apps, and on-demand services exemplify the impact of

technology in expanding access and convenience for consumers.

4. Customer Interaction and Experience:
 Personalization and AI: Technology has revolutionized

customer interactions by enabling personalized experiences. AI-

driven chatbots, recommendation systems, and data analytics

provide tailored solutions, enhancing customer satisfaction and
engagement.

5. Maintenance and Improvement:
 Data Analytics and Predictive Maintenance: Technology

facilitates continuous improvement through data analytics. Service

providers can gather and analyze user data to understand

preferences and pain points, enabling iterative enhancements.
Predictive maintenance using IoT devices ensures better service

reliability and reduced downtime.

6. Sustainability and Adaptability:
 IoT and Sustainable Practices: Technologies such as IoT and

sensors promote sustainability in service provision by optimizing

resource usage and minimizing waste. Cloud computing and

scalable infrastructure also enable services to adapt dynamically to
changing demands and market trends.

7 (a) Examine the layout resources available in the Android platform and

its suitable applications

A layout resource defines the architecture for the UI in an Activity or a

component of a UI.

file location:

res/layout/filename.xml
The filename is used as the resource ID.

compiled resource datatype:

CO3 Ana

Resource pointer to a View (or subclass) resource

resource reference:

In Java: R.layout.filename

In XML: @[package:]layout/filename

 (OR)
 (b) Analyze the application architecture using the Content Provider

using a clean diagram.

| Application A |

|---|

| +-------------------+ +----------------+ |

| | UI Components | | Content | |

| | (Activities, | | Provider | |

| | Fragments, etc.) | | | |

| +-------------------+ +----------------+ |

| | | |

| +-------------------+ | |

| | Data Access Layer | | |

| | (Content Resolver | | |

| | & Content Provider)| | |

| +-------------------+ | |

| | | |

| v v |

| -- |

| | Content Provider | |

| | +--------------------------------------+ | |

| | | Data Storage (e.g., Database) | | |

| | +--------------------------------------+ | |

| -- |

CO3 Ana

8 (a) Creating an app for a client to track their fitness is your duty.

The client has specified all of the requirements in detail and

requests that the software be compatible with Android tablets

and smartphones. Running, cycling, and weightlifting are just a

few of the physical activities that the app ought to monitor.

Exercise logs, fitness objectives, and progress tracking should all

be available to users. The customer also requests that the app

feature a social component where users may compete with peers

and discuss their accomplishments.1. Considering that the app

must retain user data, social interactions, and exercise records,

how would you handle data storage and user profiles?

1. User Profiles:

CO2 Cre

https://developer.android.com/reference/android/view/View

 Table: Create a table named "Users" to store user profiles.
 Columns: Include fields such as UserID, Username, Email,

Password (hashed), Profile Picture, etc.
 Attributes: Ensure UserID acts as a primary key to uniquely

identify users.

2. Exercise Logs:
 Table: Design a table named "ExerciseLogs" to track user

activities.
 Columns: Include UserID (foreign key referencing Users table),

ActivityType (running, cycling, weightlifting), Duration, Distance,
Weight lifted, Date, etc.

 Attributes: Utilize UserID as a foreign key for relational mapping

to user profiles.

3. Fitness Objectives:
 Table: Implement a table named "FitnessObjectives" to store user-

set fitness goals.
 Columns: UserID (foreign key), GoalType (running, cycling,

weightlifting), TargetDistance, TargetDuration, TargetWeight, etc.
 Attributes: Link UserID as a foreign key for associating goals

with specific users.

4. Social Component:
 Table: Create a table named "SocialInteractions" to handle social

features.
 Columns: UserID (foreign key), InteractionType (comments,

likes, competitions), InteractionContent, Timestamp, etc.
 Attributes: Use UserID as a foreign key to map interactions to

respective users.

Data Storage Considerations:

1. SQLite Database:
 Utilize SQLite to create and manage the database due to its

lightweight nature and compatibility with Android.
 Ensure proper indexing for efficient querying and retrieval of data.
 Employ normalization techniques to minimize redundancy and

maintain data integrity.

2. Data Security:
 Implement robust encryption techniques to secure sensitive user

data like passwords.
 Hash passwords using strong cryptographic algorithms before

storing them in the database.

3. Backup and Recovery:
 Establish regular backup mechanisms to prevent data loss.
 Implement recovery protocols in case of database corruption or

failure.

4. Optimization:
 Regularly optimize database queries and structure for improved

app performance.
 Utilize asynchronous tasks for data transactions to prevent UI

freezes.

User Profile Management:

1. Authentication and Authorization:
 Implement secure authentication mechanisms like OAuth, JWT, or

biometric authentication for user login.
 Set up proper authorization levels to control access to specific

features and data within the app.

2. User Engagement:
 Design intuitive interfaces to allow users to set fitness goals, view

progress, and engage socially with peers.
 Provide personalized recommendations based on user activities

and objectives.

In summary, leveraging SQLite for data storage in the fitness tracking app

involves a well-structured database schema, robust security measures,

efficient data handling, and user-centric features to ensure a seamless and
secure fitness tracking experience while addressing the client's

requirements.

 (Or)

 (b) It is your responsibility to create an Android reminder software

that lets users schedule and receive alerts for different chores

and occasions. Utilizing Android's BroadcastReceiver

component effectively is necessary to accomplish this. Users

should get timely notifications according to the planned time and

date of each event, and they have the ability to add, modify, and

remove reminders. In addition, the app ought to manage

reminders even when it's not actively running or the device is in

a low-power mode.1. How BroadcastReceiver might be used to

receive and manage reminders. To register and unregister the

receiver, what kind of broadcast events would you use?

Registering the BroadcastReceiver:

 To receive reminders, register the BroadcastReceiver within your

app. This registration can be done in the AndroidManifest.xml file

or dynamically within your app's code.
 In the AndroidManifest.xml

<receiver android:name=".ReminderBroadcastReceiver" />

1. Broadcast Events for Reminder Management:
 Define a custom action for the reminder broadcast event, for

instance, "your_package_name.ACTION_REMINDER". This

action will be used when sending reminders to the
BroadcastReceiver.

2. Sending Reminders using Broadcast:
 When a user schedules a reminder, create an AlarmManager to

trigger the reminder at the specified time.
 Use an Intent with the defined custom action and attach relevant

reminder data (e.g., reminder message, ID, etc.).
 Trigger the broadcast using the sendBroadcast() method:

Intent reminderIntent = new
Intent("your_package_name.ACTION_REMINDER");
reminderIntent.putExtra("reminder_id", yourReminderID);
reminderIntent.putExtra("reminder_message", yourReminderMessage);
PendingIntent pendingIntent = PendingIntent.getBroadcast(context, 0,

reminderIntent, PendingIntent.FLAG_UPDATE_CURRENT);

CO3 Cre

AlarmManager alarmManager = (AlarmManager)

context.getSystemService(Context.ALARM_SERVICE);
alarmManager.setExact(AlarmManager.RTC_WAKEUP,
reminderTimeInMillis, pendingIntent);

Receiver Handling in BroadcastReceiver:

 Implement the ReminderBroadcastReceiver class to extend

BroadcastReceiver.
 Override the onReceive() method to handle incoming reminders:

public class ReminderBroadcastReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 // Retrieve reminder details from the received intent
 int reminderId = intent.getIntExtra("reminder_id", 0);
 String reminderMessage =

intent.getStringExtra("reminder_message");

 // Show notification or perform necessary actions for the reminder
 // ...
 }
}
Unregistering the BroadcastReceiver:

 Unregister the BroadcastReceiver when it's no longer needed (e.g.,
when the app is closed):

context.unregisterReceiver(receiver);

Managing Reminders in Low-Power Mode:

 Use AlarmManager to set reminders. It works even when the app is not

actively running or the device is in a low-power state.
 Set alarms with AlarmManager using RTC_WAKEUP to ensure the

device wakes up for important reminders.

