

SNS COLLEGE OF TECHNOLOGY

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical) Approved by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chenna

Column Oriented Database

COURSE : 23CAT603- Database Management System

- **UNIT V** : Column Oriented Database
- **CLASS** : I Semester / I MCA

Relational Database Management System

- □ Scaling Up Issues when dataset is too big
 - Multiple servers to host database
 - Expensive parallel databases, but not designed for OLTP
 - Master slave architecture
- Not designed to be distributed
- Schema dependent no flexibility to handle unstructured data
- Performance is matter when data volume grows
- "scale up" our systems by upgrading our existing hardware scale-Up (vertical

CHALLENGE

Scale Up and Scale Out

Add more hardware resources

Add more servers in a distributed manner

Column Oriented Database / DBMS / Dr.S.Sundararajan/ MCA/ SNSCT

[{{{

Stands for Not Only SQL

- No relation
- No database
- A class of non-relational storage system
- Doesn't require fixed schema
- Relaxation for one/more ACID properties using CAP theorem

Why NoSQL?

- Explosion of social media network
- Explosion of large scale web services
- Rising of cloud based solutions
- Open source community
- Not required fixed schema

]}}]

NoSQL distinguished Characteristics

Column Oriented Database / DBMS / Dr.S.Sundararajan/ MCA/ SNSCT

NoSQL distinguished Characteristics

- Theorem says atleast 2 of 3 properties required for any system
 - Traditional DB choose consistency
 - Web apps choose availability

All copies have same value

System run even nodes get failed

Break into 2 or more parts

Key-Value Pair NoSQL Data Pattern

- Stores and retrieves data as a key value pair but the value part is stored as a document.
- Document here can be a form of text, arrays, strings, JSON, XML or any such format
- Collections are the group of documents that store documents that have similar contents.
- The document is stored in JSON or XML formats.
- It is best for semi-structured data and storage retrieval/ managing of documents is easy

Key:1	ID:501]	
Key:2	ID:501	Name: Ragu	
Key:2	ID:501	Name: Ragu	Mail: rs@s.com

Amazon SimpleDB, CouchDB, MongoDB are popular NoSQL

Document oriented NoSQL Data Pattern

- Data is stored in key/value pairs.
- The key is usually a sequence of strings, integers or characters but can also be a more advanced data type.
- The value is typically linked or co-related to the key.
- Key-value pair storage databases store data as a hash table where each key is unique, and the value can be a JSON, BLOB(Binary Large Objects), string, etc.
- It can handle large amounts of data and heavy load and easy retrieval of data by keys

Document 1	
ld: "001",	
Name: "Alex Bill",	Document 2
Phone: "+001 234 5341",	
Department: "Finance"	ld: "003",
	Name: "Alex Bill",
	Phone: {
	Home: "+001 234 534"
	Office: "+001 111 2759
	}
	Department: "Finance"

Redis, Dynamo, Riak are some NoSQL examples

Document oriented NoSQL Data Pattern

- Stores and retrieves data as a key value pair but the value part is stored as a document.
- Document here can be a form of text, arrays, strings, JSON, XML or any such format
- Collections are the group of documents that store documents that have similar contents.
- The document is stored in JSON or XML formats.
- It is best for semi-structured data and storage retrieval/ managing of documents is easy

Amazon SimpleDB, CouchDB, MongoDB are popular NoSQL

Column oriented NoSQL Data Pattern

- Data is stored in individual cells which are further grouped into columns. Column-oriented databases work only on columns
- Column-oriented databases work on columns and are based on BigTable paper by Google.
- Every column is treated separately. Values of single column databases are stored contiguously.
- They deliver high performance on aggregation queries

HBase, Cassandra, HBase, Hypertable are NoSQL query examples of column based database

Graph Based NoSQL Data Pattern

- It deals with the storage and management of data in graphs
- Graphs are basically structures that depict connections between two or more objects in some data
- The objects or entities are called as nodes and are joined together by relationships called Edges
- Each node serves as a point of contact for the graph.
- Used in social networks where there are a large number of entities and each entity has one or many characteristics which are connected by edges

Neo4J, Infinite Graph, OrientDB are few databases

SQL	NoSQL
A relational database	A non-relational database
Needs a predefined schema for structured data	Have a dynamic schema for unstructured data
SQL databases are table based databases	NoSQL Databases are document / key-value pair/ graph/ column based
Better fit for complex queries	Not fit for complex queries
Vertically scalable	Horizontally scalable
Database based on ACID properties	Based on CAP Theorem

Advantages	Disadvantages
Handles big data	 No standardization rules
Easy Replication	 Limited query capabilities
• It can handle structured, semi-structured, and	 Doesn't work as well with relational
unstructured data with equal effect	data
 It don't need a dedicated high-performance 	 It does not offer any traditional
server	database capabilities
It serve as the primary data source for online	
applications.	
Excels at distributed database and multi-data	
center operations	
Offers a flexible schema design which can	
easily be altered without downtime	

NoSQL Technologies

<u>References</u>

- <u>https://www.tutorialspoint.com/NoSQL-Databases</u>
- <u>https://www.geeksforgeeks.org/nosql-data-architecture-patterns</u>
- <u>https://www.mongodb.com/nosql-explained</u>
- Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow, "MongoDB: the Definitive Guide", O'Reilly Media, 3rd Edition

