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Gradient descent  

1. Introduction 

Gradient descent (GD) is an iterative first-order optimisation algorithm, used to find 

a local minimum/maximum of a given function. This method is commonly used 

in machine learning (ML) and deep learning (DL) to minimise a cost/loss function 

(e.g. in a linear regression). Due to its importance and ease of implementation, this 

algorithm is usually taught at the beginning of almost all machine learning courses. 

However, its use is not limited to ML/DL only, it’s widely used also in areas like: 

 control engineering (robotics, chemical, etc.) 

 computer games 

 mechanical engineering 

That’s why today, we will do a deep dive into the math, implementation and 

behaviour of first-order gradient descent algorithm. We will navigate the custom 

(cost) function directly to find its minimum. That means there will be no underlying 

data like in typical ML tutorials — we will be more flexible regarding a function’s 

shape. 



This method was proposed long before the era of modern computers by Augustin-

Louis Cauchy in 1847. Since that time, there was an significant development in 

computer science and numerical methods. That led to numerous improved versions 

of Gradient Descent. However, in this article we’re going to use a basic/vanilla 

version implemented in Python. 

2. Function requirements 

Gradient descent algorithm does not work for all functions. There are two specific 

requirements. A function has to be: 

 differentiable 

 convex 

First, what does it mean it has to be differentiable? If a function is differentiable it 

has a derivative for each point in its domain — not all functions meet these criteria. 

First, let’s see some examples of functions meeting this criterion: 

of differentiable functions; Image by author 

Typical non-differentiable functions have a step a cusp or a discontinuity: 

Next requirement — function has to be convex. For a univariate function, this means 

that the line segment connecting two function’s points lays on or above its curve (it 

does not cross it). If it does it means that it has a local minimum which is not a global 

one. 



The value of this expression is zero for x=0 and x=1. These locations are called an 

inflexion point — a place where the curvature changes sign — meaning it changes 

from convex to concave or vice-versa. By analysing this equation we conclude that : 

 for x<0: function is convex 

 for 0<x<1: function is concave (the 2nd derivative < 0) 

 for x>1: function is convex again 

Now we see that point x=0 has both first and second derivative equal to zero meaning 

this is a saddle point and point x=1.5 is a global minimum. 

Let’s look at the graph of this function. As calculated before a saddle point is 

at x=0 and minimum at x=1.5. 

3. Gradient 

Before jumping into code one more thing has to be explained — what is a gradient. 

Intuitively it is a slope of a curve at a given point in a specified direction. 

In the case of a univariate function, it is simply the first derivative at a selected 

point. In the case of a multivariate function, it is a vector of derivatives in each 

main direction (along variable axes). Because we are interested only in a slope along 

one axis and we don’t care about others these derivatives are called partial 

derivatives. 

A gradient for an n-dimensional function f(x) at a given point p is defined as follows: 



The upside-down triangle is a so-called nabla symbol and you read it “del”. To better 

understand how to calculate it let’s do a hand calculation for an exemplary 2-

dimensional function below. 

 

4. Gradient Descent Algorithm 

Gradient Descent Algorithm iteratively calculates the next point using gradient at the 

current position, scales it (by a learning rate) and subtracts obtained value from the 

current position (makes a step). It subtracts the value because we want to minimise 

the function (to maximise it would be adding). This process can be written as: 

 

There’s an important parameter η which scales the gradient and thus controls the step 

size. In machine learning, it is called learning rate and have a strong influence on 

performance. 

 The smaller learning rate the longer GD converges, or may reach maximum 

iteration before reaching the optimum point 

 If learning rate is too big the algorithm may not converge to the optimal point 

(jump around) or even to diverge completely. 

In summary, Gradient Descent method’s steps are: 

1. choose a starting point (initialisation) 

2. calculate gradient at this point 



3. make a scaled step in the opposite direction to the gradient (objective: minimise) 

4. repeat points 2 and 3 until one of the criteria is met: 

 maximum number of iterations reached 

 step size is smaller than the tolerance (due to scaling or a small gradient). 

 This function takes 5 parameters: 

 1. starting point [float] - in our case, we define it manually but in practice, it 

is often a random initialisation 

 2. gradient function [object] - function calculating gradient which has to be 

specified before-hand and passed to the GD function 

 3. learning rate [float] - scaling factor for step sizes 

 4. maximum number of iterations [int] 

 5. tolerance [float] to conditionally stop the algorithm (in this case a default 

value is 0.01) 

 


