
1.1 Transmission Control Protocol

TCP is often described as a byte stream, connection-oriented, reliable delivery transport
layer protocol. In turn, we will discuss the meaning for each of these descriptive terms.

1.1.1 Byte Stream Delivery

TCP interfaces between the application layer above and the network layer below. When
an application sends data to TCP, it does so in 8-bit byte streams. It is then up to the
sending TCP to segment or delineate the byte stream in order to transmit data in
manageable pieces to the receiver1. It is this lack of 'record boundaries" which give it
the name "byte stream delivery service".

1.1.2 Connection-Oriented

Before two communicating TCPs can exchange data, they must first agree upon the
willingness to communicate. Analogous to a telephone call, a connection must first be
made before two parties exchange information.

1.1.3 Reliability

A number of mechanisms help provide the reliability TCP guarantees. Each of these is
described briefly below.

Checksums. All TCP segments carry a checksum, which is used by the receiver to
detect errors with either the TCP header or data.

Duplicate data detection. It is possible for packets to be duplicated in packet switched
network; therefore TCP keeps track of bytes received in order to discard duplicate
copies of data that has already been received.2

Retransmissions. In order to guarantee delivery of data, TCP must implement
retransmission schemes for data that may be lost or damaged. The use of positive
acknowledgements by the receiver to the sender confirms successful reception of data.
The lack of positive acknowledgements, coupled with a timeout period (see timers
below) calls for a retransmission.

Sequencing. In packet switched networks, it is possible for packets to be delivered out
of order. It is TCP's job to properly sequence segments it receives so it can deliver the
byte stream data to an application in order.

Timers. TCP maintains various static and dynamic timers on data sent. The sending
TCP waits for the receiver to reply with an acknowledgement within a bounded length of
time. If the timer expires before receiving an acknowledgement, the sender can
retransmit the segment.

1

1.2 TCP Header Format

Remember that the combination of TCP header and TCP in one packet is called a TCP
segment. Figure 1 depicts the format of all valid TCP segments. The size of the header
without options is 20 bytes. We will briefly define each field of the TCP header below.

Figure 1 - TCP Header Format

1.2.1 Source Port

A 16-bit number identifying the application the TCP segment originated from within the
sending host. The port numbers are divided into three ranges, well-known ports (0
through 1023), registered ports (1024 through 49151) and private ports (49152 through
65535). Port assignments are used by TCP as an interface to the application layer. For
example, the TELNET server is always assigned to the well-known port 23 by default on
TCP hosts. A complete pair of IP addresses (source and destination) plus a complete
pair of TCP ports (source and destination) define a single TCP connection that is
globally unique. See [5] for further details.

1.2.2 Destination Port

A 16-bit number identifying the application the TCP segment is destined for on a
receiving host. Destination ports use the same port number assignments as those set
aside for source ports [5].

1.2.3 Sequence Number

2

A 32-bit number identifying the current position of the first data byte in the segment
within the entire byte stream for the TCP connection. After reaching 232 -1, this number
will wrap around to 0.

1.2.4 Acknowledgement Number

A 32-bit number identifying the next data byte the sender expects from the receiver.
Therefore, the number will be one greater than the most recently received data byte.
This field is only used when the ACK control bit is turned on (see below).

1.2.5 Header Length

A 4-bit field that specifies the total TCP header length in 32-bit words (or in multiples of
4 bytes if you prefer). Without options, a TCP header is always 20 bytes in length. The
largest a TCP header may be is 60 bytes. This field is required because the size of the
options field(s) cannot be determined in advance. Note that this field is called "data
offset" in the official TCP standard, but header length is more commonly used.

1.2.6 Reserved

A 6-bit field currently unused and reserved for future use.

1.2.7 Control Bits

Urgent Pointer (URG). If this bit field is set, the receiving TCP should interpret the
urgent pointer field (see below).

Acknowledgement (ACK). If this bit field is set, the acknowledgement field described
earlier is valid.

Push Function (PSH). If this bit field is set, the receiver should deliver this segment to
the receiving application as soon as possible. An example of its use may be to send a
Control-BREAK request to an application, which can jump ahead of queued data.

Reset the Connection (RST). If this bit is present, it signals the receiver that the sender
is aborting the connection and all queued data and allocated buffers for the connection
can be freely relinquished.

Synchronize (SYN). When present, this bit field signifies that sender is attempting to
"synchronize" sequence numbers. This bit is used during the initial stages of connection
establishment between a sender and receiver.

No More Data from Sender (FIN). If set, this bit field tells the receiver that the sender
has reached the end of its byte stream for the current TCP connection.

1.2.8 Window

3

A 16-bit integer used by TCP for flow control in the form of a data transmission window
size. This number tells the sender how much data the receiver is willing to accept. The
maximum value for this field would limit the window size to 65,535 bytes, however a
"window scale" option can be used to make use of even larger windows.

1.2.9 Checksum

A TCP sender computes a value based on the contents of the TCP header and data
fields. This 16-bit value will be compared with the value the receiver generates using the
same computation. If the values match, the receiver can be very confident that the
segment arrived intact.

1.2.10 Urgent Pointer

In certain circumstances, it may be necessary for a TCP sender to notify the receiver of
urgent data that should be processed by the receiving application as soon as possible.
This 16-bit field tells the receiver when the last byte of urgent data in the segment ends.

1.2.11 Options

In order to provide additional functionality, several optional parameters may be used
between a TCP sender and receiver. Depending on the option(s) used, the length of this
field will vary in size, but it cannot be larger than 40 bytes due to the size of the header
length field (4 bits). The most common option is the maximum segment size (MSS)
option. A TCP receiver tells the TCP sender the maximum segment size it is willing to
accept through the use of this option. Other options are often used for various flow
control and congestion control techniques.

1.2.12 Padding

Because options may vary in size, it may be necessary to "pad" the TCP header with
zeroes so that the segment ends on a 32-bit word boundary as defined by the standard
[10].

1.2.13 Data

Although not used in some circumstances (e.g. acknowledgement segments with no
data in the reverse direction), this variable length field carries the application data from
TCP sender to receiver. This field coupled with the TCP header fields constitutes a TCP
segment.

2. Connection Establishment and Termination

TCP provides a connection-oriented service over packet switched networks.
Connection-oriented implies that there is a virtual connection between two endpoints.3

4

There are three phases in any virtual connection. These are the connection
establishment, data transfer and connection termination phases.

2.1 Three-Way Handshake

In order for two hosts to communicate using TCP they must first establish a connection
by exchanging messages in what is known as the three-way handshake. The diagram
below depicts the process of the three-way handshake.

Figure 2 - TCP Connection Establishment

From figure 2, it can be seen that there are three TCP segments exchanged between
two hosts, Host A and Host B. Reading down the diagram depicts events in time.

To start, Host A initiates the connection by sending a TCP segment with the SYN control
bit set and an initial sequence number (ISN) we represent as the variable x in the
sequence number field.

At some moment later in time, Host B receives this SYN segment, processes it and
responds with a TCP segment of its own. The response from Host B contains the SYN
control bit set and its own ISN represented as variable y. Host B also sets the ACK
control bit to indicate the next expected byte from Host A should contain data starting
with sequence number x+1.

When Host A receives Host B's ISN and ACK, it finishes the connection establishment
phase by sending a final acknowledgement segment to Host B. In this case, Host A sets

5

the ACK control bit and indicates the next expected byte from Host B by placing
acknowledgement number y+1 in the acknowledgement field.

In addition to the information shown in the diagram above, an exchange of source and
destination ports to use for this connection are also included in each senders'
segments.4

2.2 Data Transfer

Once ISNs have been exchanged, communicating applications can transmit data
between each other. Most of the discussion surrounding data transfer requires us to
look at flow control and congestion control techniques which we discuss later in this
document and refer to other texts [9]. A few key ideas will be briefly made here, while
leaving the technical details aside.

A simple TCP implementation will place segments into the network for a receiver as long
as there is data to send and as long as the sender does not exceed the window
advertised by the receiver. As the receiver accepts and processes TCP segments, it
sends back positive acknowledgements, indicating where in the byte stream it is. These
acknowledgements also contain the "window" which determines how many bytes the
receiver is currently willing to accept. If data is duplicated or lost, a "hole" may exist in
the byte stream. A receiver will continue to acknowledge the most current contiguous
place in the byte stream it has accepted.

If there is no data to send, the sending TCP will simply sit idly by waiting for the
application to put data into the byte stream or to receive data from the other end of the
connection.

If data queued by the sender reaches a point where data sent will exceed the receiver's
advertised window size, the sender must halt transmission and wait for further
acknowledgements and an advertised window size that is greater than zero before
resuming.

Timers are used to avoid deadlock and unresponsive connections. Delayed
transmissions are used to make more efficient use of network bandwidth by sending
larger "chunks" of data at once rather than in smaller individual pieces.5

2.3 Connection Termination

In order for a connection to be released, four segments are required to completely close
a connection. Four segments are necessary due to the fact that TCP is a full-duplex
protocol, meaning that each end must shut down independently.6 The connection
termination phase is shown in figure 3 below.

Figure 3 - TCP Connection Termination

6

Notice that instead of SYN control bit fields, the connection termination phase uses the
FIN control bit fields to signal the close of a connection.

To terminate the connection in our example, the application running on Host A signals
TCP to close the connection. This generates the first FIN segment from Host A to Host
B. When Host B receives the initial FIN segment, it immediately acknowledges the
segment and notifies its destination application of the termination request. Once the
application on Host B also decides to shut down the connection, it then sends its own
FIN segment, which Host A will process and respond with an acknowledgement.

3. Sliding Window and Flow Control

Flow control is a technique whose primary purpose is to properly match the
transmission rate of sender to that of the receiver and the network. It is important for the
transmission to be at a high enough rate to ensure good performance, but also to
protect against overwhelming the network or receiving host.

In [8], we note that flow control is not the same as congestion control. Congestion
control is primarily concerned with a sustained overload of network intermediate devices
such as IP routers.

7

TCP uses the window field, briefly described previously, as the primary means for flow
control. During the data transfer phase, the window field is used to adjust the rate of
flow of the byte stream between communicating TCPs.

Figure 4 below illustrates the concept of the sliding window.

Figure 4 - Sliding Window

In this simple example, there is a 4-byte sliding window. Moving from left to right, the
window "slides" as bytes in the stream are sent and acknowledged.7 The size of the
window and how fast to increase or decrease the window size is an area of great
research. We again refer to other documents for further detail [9].

Introduction:

The OSI model consists of seven protocol layers and each layer performs a supportive
communication task.
The Transport layer is the fourth layer in the OSI model, which provides communication services
between the computers connected in the network.
For example: The transport layer provides an error checking service during the transmission
of data packets from source computer to destination computer.

Process-to-Process Delivery

 The data link layer helps to deliver the frames between two neighboring nodes over a
link. This process is called as node-to-node delivery.

8

 The network layer helps to deliver the datagrams between two hosts. This process is
called as host-to-host delivery.

 Several processes are carried out on the source host and destination host. Some
mechanism is needed to complete the delivery process between the source host and
destination host.

 The transport layer helps to carry out the process-to-process delivery i.e. the delivery of
a packet or part of message from one process to another process.

9

	1.1 Transmission Control Protocol
	1.1.1 Byte Stream Delivery
	1.1.2 Connection-Oriented
	1.1.3 Reliability
	1.2 TCP Header Format
	1.2.1 Source Port
	1.2.2 Destination Port
	1.2.3 Sequence Number
	1.2.4 Acknowledgement Number
	1.2.5 Header Length
	1.2.6 Reserved
	1.2.7 Control Bits
	1.2.8 Window
	1.2.9 Checksum
	1.2.10 Urgent Pointer
	1.2.11 Options
	1.2.12 Padding
	1.2.13 Data
	2. Connection Establishment and Termination
	2.1 Three-Way Handshake
	2.2 Data Transfer
	2.3 Connection Termination

	3. Sliding Window and Flow Control
	Introduction:
	Process-to-Process Delivery

