
User Datagram Protocol (UDP) and IP Fragmentation

Introduction

UDP is a simple, datagram-oriented, transport-layer protocol that preserves message boundaries:

 It does not provide error correction, sequencing, duplicate elimination, flow control, or
congestion control.

 It can provide error detection, and it includes the true end-to-end checksum at the
transport layer.

o The Checksum field (figure_10-2.png) is end-to-end and is computed over the
UDP pseudo-header, which includes the Source and Destination IP Address fields
from the IP header. Thus, any modification made to those fields (e.g., by NAT)
requires a modification to the UDP checksum.

 It provides minimal functionality itself, so applications using it have a great deal of
control over how packets are sent and processed. Applications wishing to ensure that their
data is reliably delivered or sequenced must implement these protections themselves.

 Each UDP output operation requested by an application produces exactly one UDP
datagram, which causes one IP datagram to be sent.

o This is in contrast to a stream-oriented protocol such as TCP (Chapter 15), where
the amount of data written by an application may have little relationship to what
actually gets sent in a single IP datagram or what is consumed at the receiver.

[RFC0768] is the official specification of UDP, and it has remained as a standard without
significant revisions for more than 30 years.

 UDP provides no error correction as mentioned: it sends the datagrams that the
application writes to the IP layer, but there is no guarantee that they ever reach their
destination.

 There is no protocol mechanism to prevent high-rate UDP traffic from negatively
impacting other network users.

Advantages of UDP *

Given this lack of reliability and protection, we might be tempted to conclude that there are no
benefits to using UDP at all. This is not true, however. UDP has the following advantages:

1

https://notes.shichao.io/tcpv1/figure_10-2.png
https://tools.ietf.org/html/rfc768
https://notes.shichao.io/tcpv1/ch15/

 Because of its connectionless character, it has less overhead than other transport
protocols.

 Broadcast and multicast operations (Chapter 9) are much more straightforward using a
connectionless transport such as UDP.

 The ability of an application to choose its own unit of retransmission can be an important
consideration.

Encapsulation of a UDP datagram *

The following figure shows the encapsulation of a UDP datagram as a single IPv4 datagram.

 The IPv6 encapsulation is similar, but other details differ slightly (Section 10.5).

 The IPv4 Protocol field has the value 17 to indicate UDP.

 IPv6 uses the same value (17) in the Next Header field.

 Later in this chapter describes what happens when the size of the UDP datagram exceeds
the MTU size and the datagram must be fragmented into more than one IP-layer packet.

UDP Header

THe following figure shows UDP datagram, including the payload and UDP header (which is
always 8 bytes in size):

2

https://notes.shichao.io/tcpv1/ch10/#ip-fragmentation
https://notes.shichao.io/tcpv1/ch10/#udp-and-ipv6
https://notes.shichao.io/tcpv1/ch9/

 Port numbers act as mailboxes and help a protocol implementation identify the sending
and receiving processes (Chapter 1). They are purely abstract: they do not correspond to
any physical entity on a host. In UDP port numbers are positive 16-bit numbers:

o The source port number is optional; it may be set to 0 if the sender of the
datagram never requires a reply.

Transport protocols such as TCP and UDP, and SCTP [RFC4960] use the destination port
number to help demultiplex incoming data from IP. Because IP demultiplexes the incoming IP
datagram to a particular transport protocol based on the value of the Protocol field in the IPv4
header or Next Header field in the IPv6 header, this means that the port numbers can be made
independent among the transport protocols. That is, TCP port numbers are used only by TCP, and
the UDP port numbers only by UDP, and so on. A straightforward consequence of this separation
is that two completely distinct servers can use the same port number and IP address, as long as
they use different transport protocols.

3

https://notes.shichao.io/tcpv1/ch1/

Despite this independence, if a well-known service is provided (or can conceivably be provided)
by both TCP and UDP, the port number is normally allocated to be the same for both transport
protocols. This is purely for convenience and is not required by the protocols. See [IPORT] for
details on how port numbers are formally assigned.

 The UDP Length field is the length of the UDP header and the UDP data in bytes. The
minimum value for this field is 8 except when UDP is used with IPv6 jumbograms (see
Section 10.5). Sending a UDP datagram with 0 bytes of data is acceptable, although rare.

o The UDP Length field is redundant; the IPv4 header contains the datagram’s total
length (Chapter 5), and the IPv6 header contains the payload length. The length of
a UDP/IPv4 datagram is then the total length of the IPv4 datagram minus the
length of the IPv4 header. A UDP/IPv6 datagram’s length is the value of the
Payload Length field contained in the IPv6 header minus the lengths of any
extension headers (unless jumbograms are being used). In either case, the UDP
Length field should match the length computed from the IP-layer information.

UDP Checksum

Examples

UDP and IPv6

UDP-Lite

IP Fragmentation

IP employs fragmentation and reassembly. Fragmentation in IPv4 can take place at the original
sending host and at any intermediate routers along the end-to-end path. Note that datagram
fragments can themselves be fragmented. Fragmentation in IPv6 is somewhat different because
only the source is permitted to perform fragmentation.

When an IP datagram is fragmented, it is not reassembled until it reaches its final destination,
because:

1. Not performing reassembly within the network alleviates the forwarding software (or
hardware) in routers from implementing this feature

2. Different fragments of the same datagram may follow different paths to their common
destination

Example: UDP/IPv4 Fragmentation

4

https://notes.shichao.io/tcpv1/ch5/
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

An UDP application may wish to avoid IP fragmentation, because when the size of the resulting
datagram exceeds the link’s MTU, the IP datagram is split across multiple IP packets, which can
lead to performance issues because if any fragment is lost, the entire datagram is lost.

A single UDP datagram with 2992 UDP payload bytes is fragmented into three UDP/ IPv4
packets (no options). The UDP header that contains the source and destination port numbers
appears only in the first fragment (a complicating factor for firewalls and NATs). Fragmentation
is controlled by the Identification, Fragment Offset, and More Fragments (MF) fields in the
IPv4 header.

The original UDP datagram included 2992 bytes of application (UDP payload) data and 8 bytes
of UDP header, resulting in an IPv4 Total Length field value of 3020 bytes (IP header is 20-byte).
When this datagram was fragmented into three packets, 40 extra bytes were created (20 bytes for
each of the newly created IPv4 fragment headers). Thus, the total number of bytes sent is 3060.
[p489]

Fields:

 Identification: its value (set by the original sender) is copied to each fragment and is
used to group them together when they arrive

 Fragment Offset: the offset of the first byte of the fragment payload byte in the original
IPv4 datagram (in 8-byte units)

5

 MF: indicates whether more fragments in the datagram should be expected and is 0 only
in the final fragment

If one fragment is lost, the entire datagram is lost, since IP itself has no error correction
mechanism of its own. Mechanisms such as timeout and retransmission are left as the
responsibility of the higher layers. For this reason, fragmentation is often avoided.

We can use our sock program and increase the size of the datagram until fragmentation occurs.
On an Ethernet, the maximum amount of data in a frame is ordinarily 1500 bytes, which leaves
at most 1472 bytes for application data to avoid fragmentation, assuming 20 bytes for the IPv4
header and 8 bytes for the UDP header.

We will run our sock program with data sizes of 1471, 1472, 1473, and 1474 bytes. We expect
the last two to cause fragmentation:

[p490-492]

Linux% sock -u -i -n1 -w1471 10.0.0.3 discard
Linux% sock -u -i -n1 -w1472 10.0.0.3 discard
Linux% sock -u -i -n1 -w1473 10.0.0.3 discard
Linux% sock -u -i -n1 -w1474 10.0.0.3 discard
1 23:42:43.562452 10.0.0.5.46530 > 10.0.0.3.9:
 udp 1471 (DF) (ttl 64, id 61350, len 1499)
2 23:42:50.267424 10.0.0.5.46531 > 10.0.0.3.9:
 udp 1472 (DF) (ttl 64, id 62020, len 1500)
3 23:42:57.814555 10.0.0.5 > 10.0.0.3:
 udp (frag 37671:1@1480) (ttl 64, len 21)
4 23:42:57.814715 10.0.0.5.46532 > 10.0.0.3.9:
 udp 1473 (frag 37671:1480@0+) (ttl 64, len 1500)
5 23:43:04.368677 10.0.0.5 > 10.0.0.3:
 udp (frag 37672:2@1480) (ttl 64, len 22)
6 23:43:04.368838 10.0.0.5.46535 > 10.0.0.3.9:
 udp 1474 (frag 37672:1480@0+) (ttl 64, len 1500)

One observation that may be surprising is that the fragments with larger offsets are delivered
prior to the first fragments. In effect, the sender has intentionally reordered the fragments. This
behavior can be beneficial. If the last fragment is delivered first, the receiving host is able to
ascertain the maximum amount of buffer space it will require in order to reassemble the entire
datagram.

6

	User Datagram Protocol (UDP) and IP Fragmentation
	Introduction
	Advantages of UDP *
	Encapsulation of a UDP datagram *

	UDP Header
	UDP Checksum
	Examples
	UDP and IPv6
	UDP-Lite
	IP Fragmentation
	Example: UDP/IPv4 Fragmentation

